


Free Replacement 

Limitation on 
Warranties and Liability 

Copyright 

If you purchase Apple software or manuals that have physical defects, or even if 
you damage them yourself, Apple will replace them at no cost to you. This offer is 
good for two years after the last date that Apple continues to sell that product to its 
dealers. See your local authorized Apple dealer for details about the Apple Media 
Exchange Program. 

Even though Apple has tested this manual and software and has reviewed their 
contents, neither Apple nor its suppliers make any warranty or representation, either 
express or implied, with respect to this manual or software, their quality, performance, 
merchantability, or fitness for any particular purpose. As a result, this manual and 
software are sold "as is;· and you the purchaser are assuming the entire risk as to 
their quality and performance. In no event will Apple or its suppliers be liable for 
direct, indirect, incidental, or consequential damages resulting from any defect in 
the manual, even if they have been advised of the possibility of such damages. 
In particular, they shall have no liability for any pr~rams or data stored in or used 
with Apple products, including the costs of recovenng or reproducing these programs 
or data. 

This manual and the accompanying software (computer programs) are copyrighted 
by Apple or by Apple's supplier~. with all rights reserved. Under the copyright laws, 
this manual and software may not be copied, in whole or in part, without the written 
consent of Apple, except in the normal use of the software or to make a backup 
copy. This exception does not allow copies to be made for others, whether or not sold, 
but all of the material purchased (with all backup copies) may be sold, given, or lent 
to another person. Under the law, copying includes translating into another language. 

You may use the software on any computer owned by you, but extra copies cannot 
be made for this purpose. For some products, a multi-use license may be purchased 
to allow the software to be used on more than one computer owned by the purchaser, 
including a shared-disk system. Contact your authorized Apple dealer for information 
on multi-use licenses. 

© Logo Computer Systems Inc., 1982, 1984 
9960 Cote de Liesse 
Lachine, Quebec 
H8T-1A1 

© Apple Computer, Inc., 1984 
20525 Mariani Avenue 
Cupertino, California 95014 

Apple, the Apple logo, and ProDOS are registered trademarks of Apple Computer, Inc. 
Simultaneously published in the United States and Canada. All rights reserved. 
Reorder Apple Product #A2L4033 

• 

•• 
••• 
•• 
•• 
I 



:[:] 
I 

I 

Apple Logo II Reference 
Manual 



I · 

I 

I 

I 

I 

I 

I 



•• • List of Figures and Tables XV 

• Preface About This Manual xix 
xix How to Use This Manual 

I 
xxi Visual Cues 

• Chapter 1 Introduction 3 
3 What You Need 
4 Getting Help From Logo 

I 5 Typing Logo Instructions 
6 How Primitives Are Described 

• Chapter2 Logo Grammar 11 
11 Procedures 
13 Punctuation and Inputs to Procedures 
14 Commands and Operations 

I 15 Variables 
16 Global and Local Variables 
17 Understanding a Logo Line 

• Chapter3 Defining Procedures With TO 21 
21 TO 
22 END 

Table of Contents -



I 

• Chapter4 Using the Logo Editor 26 
I 26 How the Editor Works 

28 Editing Procedures With EDIT 
29 Typing and Editing in the Editor I 29 Moving the Cursor 
30 Inserting and Deleting Text 
31 Getting Out of the Editor I 31 Other Ways to Start Up the Editor 

• ChapterS Turtle Graphics 35 I 
36 Changing the Turtle's State 
36 BACK 
37 CLEARSCREEN ' 
37 FORWARD -38 HIDETURTLE 
38 HOME 
38 LEFT 

I 39 RIGHT 
40 SETHEADING 
40 SETPOS 

I 41 SETX 
41 SETY 
42 SHOWTURTLE 

I 42 Getting Information About the turtle's State 
43 HEADING 
43 POS 

I 44 SHOWNP 
45 TOWARDS 
45 XCOR 

I 46 YCOR 
47 Using the Pen and Screen 
47 CLEAN 

I 47 DOT 
48 FENCE 
48 FILL 

I 49 PEN DOWN 
50 PEN ERASE 
50 PEN REVERSE 

I 51 PEN UP 
52 SETBG 
52 SET PC 
53 WINDOW 

i;] Table of Contents 



I 
53 WRAP 

I 
54 Getting Information About the Pen and Screen 
54 BACKGROUND 
54 DOTP 

I 
54 PEN 
55 PEN COLOR 

I • Chapter 6 Text and Screen Commands 59 
60 Primitives Affecting Text on the Screen 

I 60 CLEARTEXT 
60 CURSOR 
61 FULLSCREEN 

I 61 SETCURSOR 
62 SETWIDTH 
63 SPLITSCREEN 
63 TEXTSCREEN 
63 WIDTH 
63 Special Control Characters That Change Screen 

Use 
63 CONTROL-L 
64 CONTROL-S 
64 CONTROL-T 

I • Chapter 7 Words and Lists 67 
67 Words: Some General Information 

I 68 Lists: Some General Information 
69 Breaking Words and Lists Into Pieces 
70 BUTFIRST 

I 71 BUT LAST 
71 FIRST 
73 ITEM 

I 73 LAST 
74 MEMBER 
75 Putting Words and Lists Together 

I 76 FPUT 
77 LIST 
77 LPUT 

I 78 PARSE 
78 SENTENCE 
80 WORD 

I 81 Examining Words and Lists 

I Table of Contents lv 



I 
81 ASCII 
82 BEFOREP 

I 83 CHAR 
85 COUNT 
85 EMPTYP 

I 87 EQUALP 
88 LISTP 
88 MEMBERP 
89 NUMBERP I 
90 WORDP 
90 Changing the Case of Words 

I 90 LOWERCASE 
91 UPPERCASE 

I • ChapterS Variables 95 
95 Variables: Some General Information I 96 EON 
97 EONS 
98 LOCAL I 99 MAKE 

100 NAME 
101 NAMEP I 101 THING 

• Chapter 9 Arithmetic Operations 105 
I 

105 Arithmetic Operations: Some General I Information 
107 How Logo Evaluates Math Operations 
108 Prefix-Form Operations I 108 ARCTAN 
109 cos 
109 DIFFERENCE I 110 FORM 
111 INT 
112 INTQUOTIENT I 112 PRODUCT 
113 QUOTIENT 
113 RANDOM I 114 REMAINDER 
115 RERANDOM 
116 ROUND I 

Vii Table of Contents I 



I • Chapter 10 

I 

I 

I 

I 

I 

I 

I 

I 

I 
I 

I 

116 SIN 
117 SORT 
117 SUM 
118 Infix-Form Operations 
119 Plus Sign 
119 Minus Sign 
120 Multiplication Sign 
121 Division Sign 
121 Less Than Sign 
122 Equal Sign 
122 Greater Than Sign 

Conditionals and Flow 125 
of Control · 
125 Flow of Control: Some General Information 
126 Using Conditionals 
126 IF 
127 IFFALSE 
128 IFTRUE 
128 TEST 
129 Interrupting Procedures 
130 co 
130 OUTPUT 
131 PAUSE 
132 STOP 
132 WAIT 
133 Transferring Control and Repeating Instructions 
133 CATCH 
135 ERROR 
136 GO 
137 LABEL 
137 REPEAT 
138 RUN 
140 THROW 
140 Debugging Programs 
141 STEP 
141 TRACE 
143 UNSTEP 
143 UNTRACE 

144 Special Control Characters 
144 OPEN APPLE-ESC 
144 CONTROL-W 
144 CONTROL-Z 

Table of Contents 



I 
• Chapter 11 Modifying Procedures 147 

Under Program Control I 
148 COPYDEF 
148 DEFINE I 150 DEFINEDP 
150 PRIMITIVEP 
151 TEXT I 

• Chapter 12 Logical Operations 157 I 
158 AND 
159 NOT I 160 OR 

• Chapter 13 The Outside World 163 I 
163 Using Paddles 

I 163 BUTTONP 
164 PADDLE 
164 Making Logo Read Information 

I 164 KEYP 
165 READCHAR 
166 READCHARS 

I 167 READLIST 
167 READWORD 
168 Making Logo Write Information 

I 169 PRINT 
170 SHOW 
170 TYPE 

I 171 Making Sounds With TOOT 

• Chapter 14 Managing Your Workspace 175 I 
176 Sizing Up Your Workspace 
176 NODES I 177 RECYCLE 
177 Printing From the Workspace 
177 PO I 178 PO ALL 
178 PON 
179 PONS I 

viii I Table of Contents I 



I 
179 POPS 

I 
180 POT 
180 POTS 
180 Erasing From the Workspace 

I 
181 ERALL 
181 ERASE 
181 ERN 

I 
181 ERNS 
182 ERPS 
182 Cleaning and Organizing the Workspace 

I 
182 BURY 
182 BURY ALL 
183 BURYNAME 

I 
184 UN BURY 
184 UNBURYALL 
185 UNBURYNAME 

I • Chapter 15 General File Management 189 

I 189 Logo's File System: Some General Information 
189 What Is a File? 
190 Disk Formatting and Volume Names 

I 190 Disk Organization 
192 Accessing Files 
194 General File System Primitives 

I 194 CATALOG 
195 CREATEDIR 
196 EDITFILE 

I 196 ERASE FILE 
196 FILEP 
197 LOADHELP 

I 197 ONLINE 
198 PO FILE 
198 PREFIX 

I 199 RENAME 
199 SETPREFIX 

I • Chapter 16 Managing Various Files 205 

I 206 Working With Program Files 
206 LOAD 
206 SAVE 

I 207 SAVEL 

I Table of Contents ~ 



I 
207 Working With Picture Files 
208 LOAD PIC 

I 208 PRINTPIC 
208 SAVEPIC 
209 Working With Dribble Files 

I 209 DRIBBLE 
210 NODRIBBLE 
209 Working With Data Files 

I 211 Reading and Writing Information 
211 Opening Files 
212 ALLOPEN 

I 212 CLOSE 
213 CLOSEALL 
214 FILELEN 

I 215 OPEN 
216 READER 
217 READPOS 

I 218 SETREAD 
219 SETREADPOS 
219 SETWRITE 

I 220 SETWRITEPOS 
221 WRITEPOS 
221 WRITER 
221 A Sample Project Using the Data File System I 
222 Step 1: Creating a Data File 
224 Step 2: Retrieving Information 

I 225 Step 3: Changing Information 

• Chapter 17 Property Lists 229 I 
229 Using Property Lists to Keep Records 
230 ERPROPS I 230 GPROP 
231 PLIST 
232 PPROP I 232 PPS 
233 REM PROP 

I • Chapter 18 Special Primitives 237 
238 Assembly-Language Primitives I 
238 Some Specifics About the Apple 's Memory 
241 .AUXDEPOSIT I 

~ Table of Contents I 



I 
242 .AUXEXAMINE 

I 
242 .BLOAD 
242 .BSAVE 
242 .CALL 

I 
242 .DEPOSIT 
243 .EXAMINE 
243 Special Graphics Primitives 

I 
243 .SCRUNCH 
243 .SETSCRUNCH 
245 Miscellaneous Primitives 

I 
245 .CONTENTS 
245 .QUIT 

I • Appendix A Messages 251 

I • Appendix B Useful Tools 255 

I 
255 Graphics Tools 
255 ARCR and ARCL 
256 CIRCLER and CIRCLEL 

I 
256 POLY 
257 Math Tools 
257 ABS 

I 
257 CONVERT 
i51 IJIVI§QRP 
258 LOG 

I 
258 LN 
259 PWR 
260 EXP 

I 
260 Program Logic or Debugging Tools 
261 COMMENT 
261 FOREVER 

I 
261 MAP 
262 SORT and SUPERSORT 
262 WHILE 

I 
262 Tools for the Young Logo User 
262 DRIVE 
263 TEACH 

I 

I 

I Table of Contents lxi 



I 
• AppendixC Startup Files 267 

267 Creating a STARTUP File I 
268 A Note of Caution Before You Start 
268 The STARTUP Variable I 

• AppendixD Memory Space 271 I 
271 How Space Is Allocated 
272 Some Hints for Saving Space 

I 
• AppendixE Parsing 275 I 

275 Delimiters and Spacing 
276 Infix Procedures 
277 Brackets and Parentheses I 
277 Quotation Marks and Delimiters 
278 The Minus Sign 

• AppendixF ASCII Character Codes 281 
I 

• Appendix G Summary of Logo Primitives 285 
I 

• AppendixH Using a Printer With Logo 299 I 
300 The Software 
301 The Computer 

I 303 The Printer 

• Glossary 307 I 

• Index 315 I 

I 

I 

xii I Table of Contents I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

-
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• Preface 

• Chapter 1 

• Chapter 13 

• Chapter 15 

• Chapter 18 

• Appendix A 

About This Manual 
xxii Figure P-1. Sample Logo Screen 

Introduction 
5 Table 1-1. Keystrokes for Typing 

and Editing 
7 Table 1-2. Input Words 

The Outside World 
172 Table 13-1. Note Frequencies for TOOT 

General File Management 
192 Figure 15-1. Files and Subdirectories 

on a Volume 

Special Primitives 
239 Figure 18-1. Map of Main Memory Bank 
240 Figure 18-2. Map of Auxiliary Memory 

Bank 
240 Table 18-1 . Special Memory Locations 

Messages 
251 Table A-1. Logo Messages 

List of Figures and Tables 

xxii 

3 

163 

189 

237 

2 51 

lxv 



• Appendix F ASCII Character Codes 281 
282 Table F-1. ASCII Codes for Normal 

Characters 
283 Table F-2. ASCII Codes for Inverse 

Characters 

• Appendix H Using a Printer With Logo 299 
299 Table H-1 . Printer Problems and 

Causes 

List of Figures and Tables 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

.... 

Ill 

(") 

CD 

This manual describes in detail how to use Apple Logo II and is 
intended for reference purposes. The accompanying manual , 
Apple Logo II: An Introduction to Programming, introduces you 
to the more fundamental features of Logo and is intended as a 
guide to becoming familiar with Logo. 

This reference manual offers concise descriptions of each of 
the primitives in the Logo language, along with many sample 
programs (procedures) . The chapter headings listed in the Table 
of Contents provide a handy reference to how the primitives are 
organized. 

• How to Use This Manual 

Here are some suggestions on how to proceed. 

The intended audience 

To learn the basics 

To get an overview of the 
rules of Logo's grammar 

How to Use This Manual 

This manual is written for 
people who already know 
something about Logo or 
languages like Logo. 

Work through the 
accompanying manual , Apple 
Logo II: An Introduction to 
Programming. 

Read Chapter 2, Logo 
Grammar. You should read the 
overview before using this 
manual. 



I 
To find a primitive to perform Look at the chapter headings 
a particular task in the Table of Contents or at 

I the Apple Logo II Reference 
Card. Both list categories of 
primitives so you can locate a 

I relevant chapter. 

To find out what a particular Look it up in Appendix G or in 
primitive does the Index. I 
To find out more about Logo For a definition of a word, or 

an explanation of a new term, 

I refer to the Glossary at the 
end of th is manual. The Index 
is also a handy means of 

I finding information quickly. 

To get quick general help from Hold down either (ill or (j) 
Logo itself and press CD at any time, I except when a procedure is 

executing. You 'll see a display 
with lots of helpful information. I 

To get quick help from Logo Type HELP followed by the 
about a specific primitive name of the primitive you want 

I to know about and press 
(RETURN ). (Remember to put a 
double quotation mark before 

I the name of the primitive.) 
You 'll see a display listing the 
inputs to that primitive. 

I To find out more about the Read the appropriate owner's 
Apple lie or the Apple lie manual. 

To help us improve future Please fill out the Tell Apple I 
Apple products form at the end of this 

manual. Your experience with 

I Logo will help us in planning 
new products and manuals. 

I 

I 

I 

~ About This Manual I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• Visual Cues 

Notes in the margin reinforce new 
terms or point to useful information 
elsewhere in this manual. 

Procedure defin itions and sample interactions between you and 
Logo appear in a different type font from the rest of the manual. 
This font represents more closely what you see on your screen 
display. 

Look for the following additional visual aids throughout the 
manual. 

When you see a hyphen joining two keys , it means that you 
press the keys simultaneously. For instance, CQJ-CD means you 
should press @] and CD at the same time. In actual practice, 
you probably will press @] first and then , while still holding 
down @], press (D. 

Note: Gray boxes like this provide helpful hints or interesting 
pieces of information. 

Warning 
Boxes like this indicate potential problems or disasters. 

Visual Cues 



Logo screens are shown like this . 

Figure P-1 shows the Logo opening screen display. 

Figure P-1. Sample Logo Screen 

© 1984, Logo Computer Systems Inc . 
6-? for help 

Welcome to Logo 
? 

I 

• 
I 

I 

I 

I 

I 

I 

I 
A Note for Apple lie Owners: If you are using an 
Apple lie, the @] shown in the message above may appear I 
on your screen as a black letter A on a light-colored 
rectangle. Whenever you see this on your screen, it stands I 
for@]. 

I 

I 

I 

About This Manual I 



I (") 

::r 

Ol 

I "'0 

CD 

...... 

I 

I 

I 

I • Introduction 
3 What You Need 

I 
4 Getting Help From Logo 
5 Typing Logo Instructions 
6 How Primitives Are Described 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I Chapter 1: Introduction 11 



I 

I 

• 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• 



• What You Need 

Logo is a computer language that offers featur~s for both the 
novice and the experienced programmer. Logo 's features range 
from turtle graphics , which lets you create interesting pictures · 
quickly and easily , to features for list processing and file 
management. 

This chapter gives you 

• a list of the equipment you need to use Apple Logo II 

• methods of getting help from Logo 

• rules for typing Logo instructions 

• an explanation of how Logo primitives are described 
throughout this manual. 

To use Apple Logo II , you must have 

• either an Apple lie computer or an Apple lie computer with 
an Extended SO-Column Text Card and a disk drive (The 
Apple lie has a built-in disk drive; you can use an additional 
drive if you wish , but it isn 't necessary.) 

• a video display device, either a video monitor or a television 
set 

What You Need 



For information on printers . see the 
owner 's manual that came with 
your Apple . 

• • the Logo disk, which has the name APPLE LOGO II 

• a compatible printer (optional) I 
For the Apple lie, you can use the Apple lmagewriter to 
print text and graphics. You connect the printer to port 1 on I 
the back panel of the computer. 

For the Apple lie, you can use the Apple lmagewriter or 
the Apple Dot Matrix Printer. You can print text on both • 
printers, but you cannot print graphics on the Dot Matrix 
Printer. 

Other compatible printers may work for text, but not for 
graphics. • 

• Getting Help From Logo 

Logo provides two ways for you to get help while using it; one 
gives general help information and the other gives information 
about a specific Logo primitive. 

To get general information about Logo, press @]-G). 
Logo displays one of two possible screens, depending on 
where you are when you request help: 

• If you are at top level, the help screen has information about 
turtle graphics commands, using the Editor, defining a 
procedure, and special keystrokes. 

• If you are in the Logo Editor, the help screen has 
information about the Editor keystrokes. 

Before Logo displays the help screen, Logo saves the contents 
of the current screen. Then Logo displays the help screen in 
40 columns. You can scroll through the screen using CD and CD. 
or, by pressing@]-( ESC), you can return to the place from 
which you asked for help. 

To get information about a specific Logo primitive, 
type HELP and the primitive name, with a quotation mark 
before the name. Logo displays the inputs required for that 
primitive. 

Chapter 1: Introduction 

I 

• 
• 
• 
• 
I 

• 
II 

• 
• 
• 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• 
I 

• Typing Logo Instructions 

For a list of the keystrokes used 
with the Logo Editor, see 
Chapter 4, Using the Logo Editor. 

This section describes the guidelines for typing in uppercase 
and lowercase letters and the keystrokes for communicating 
with Logo from the keyboard . 

Logo does not distinguish between uppercase and lowercase 
letters in any words you type. Thus, when typing anything into 
the computer, you need not pay attention to which case you are 
using. For example, if you define a procedure with the name 
SQUARE , then ask Logo to execute it, Logo will execute it 
regardless of what case you use for the letters. So, SQUARE is 
the same as Square or square . 

Table 1-1 lists the keystrokes to use with Logo at top level and 
what they do. 

Table 1·1. Keys trokes for Typing and Editing 

Keystroke 

G 
8 
CQJ-G 

(QJ-GJ 

@]-@ or 
CQJ-0 
(QJ-(8 or 
CQJ-0 

What It Does 

Moves the cursor left one character position. 

Moves the cursor right one character position. 

Moves the cursor left one word . 

Moves the cursor right one word . 

Moves the cursor to the beginning of the 
current line. 

Moves the cursor to the end of the current 
line. 

Typing Logo Instructions 



Table 1·1. Keystrokes for Typing and Editing (continued) 

Keystroke 

( CONTROL HID 
Or (DELETE) 

( CONTROL )-(D 

( CONTROL )-CZ) 

( CONTROL )-(D 

( CONTROL)-@ 

@]-CD or 
@J-0 
(RETURN) 

What It Does 

Erases the character to the left of the cursor. 

Erases the character under the cursor. 

Erases all the characters on the current line. 

Erases all the characters from the present 
cursor position to the end of the line. 

Retrieves the last line you typed or erased 
USing (CONTROL )-(D. 

Displays a screen of helpful information. 

From anywhere in the line, tells Logo to do 
what you just typed . 

• How Primitives Are Described 

At the beginning of each primitive description , you will find 

• the format of the primitive and its inputs: the name of the 
primitive, the number of inputs to the primitive, and the type 
of input required . All of the input words used are listed at 
the end of this chapter. 

I 

• the short form of the primitive, if there is one, in parentheses. I 
• an indication of what kind of primitive it is: command , 

operation , or infix operation. 

Some primitives (such as SUM) have an optional format, which 
is enclosed in parentheses. This indicates that the primitive will 
accept as many inputs as you wish. When using more than two 
inputs with such a primitive (or, in some cases, one input), you 
must always put a left parenthesis before its name and a right 
parenthesis after the last input. 

Table 1-2 lists the words used in the syntax of Logo primitives. 
The words represent the kind of input a primitive needs. 

Chapter 1: Introduction 



I 
Table 1·2. Input Words 

I Input Word Description 

byte A unit of data used by the 

I 
computer. An integer from 0 
through 255. 

character Letters of the alphabet, 

I numbers, and punctuation 
marks. 

colornumber An integer from 0 through 5 

I giving the color of the pen or 
background. 

I [columnnumber linenumoer) A list of two integers giving 
the position of the cursor. 

I 
degrees Degrees of an angle, a 

number. 

distance A number. 

I duration An integer from 0 
through 65,535. 

I field An integer giving the number 
of elements in a number. 

file A pathname or a slot or port 

I number. 

frequency An integer from 3 

I 
through 65 ,535 . 

inputs Words with colons in front. 
Used in conjunction with TO. 

I integer An integer. If you substitute a 
decimal number for an integer, 

I 
Logo truncates the number 
and continues processing. 

list A list of words or lists. 

I loc A location (region) of memory. 

name(list) A word naming a procedure or 

I ..... • l ..... ... ; ..... a.-.. 1 ..... ..... , ,... l j ..... ... -~ ......... ..._ ...... ,... 

a variable, or a l1st of names. 

I 

I How Primitives Are Described 17 



Table 1·2. Input Words (continued) 

Input Word 

number 

object (obj) 

paddlenumber 

path name 

precision 

predicate 

prefix 

property 

width 

word 

[xcor ycor] 

Chapter 1: Introduction 

Description 

A real number or an integer. 

A Logo object-a word, a list, 
or a number. 

An integer (0, 1, 2 or 3) 
specifying the paddle. 

A name that indicates the path 
to a file on a disk. 

An integer from 0 through 6, 
giving the number of digits 
after the decimal point in a 
real number. 

An operation that gives either 
the word TRUE or the word 
FALSE. 

A name for a ProDOS prefix 
gf a fil§ gn gi§k, 

A word . 

An integer, either 40 or 80. 

A sequence of characters . 

A list of two numbers giving 
the coordinates of the turtle. 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

i l 

I 

I 

I 

• Logo Grammar. 
11 Procedures 
13 Punctuation and Inputs to Procedures 
14 Commands and Operations 
15 Variables 
16 Global and Local Variables 
17 Understanding a Logo Line 

Chapter 2: Logo Grammar 



I 

I 

• 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

• Procedures 

CD 

...... 

Logo is a powerful and flexible programming language made up 
of building blocks callea procedures. Some procedures are 
already built into the Logo system; these are called primitives. 

9th~r§ gr~ 8~fin~8 BY ¥88: 9th@F th~n tR@ fg8t th~t SFimiti~~§ 
are built in, there is no difference between primitives and the 
procedures you define. 

Procedures can construct, modify, and run other procedures. 
They obey the rules of Logo grammar. The following sections 
briefly describe these rules . 

Here is the definition of a procedure called WELCOME: 

TO WELCOME 
PRINT "HI 
END 

(title line) 

The title line always begins with TO followed by the name of the 
procedure. The last line contains only the word END. For 
WELCOME, the main body is a request to run the primitive 
PRINT. 

There are three ways of defining a procedure: 

• By typing in its definition at top level (indicated by the 
question mark prompt character) 

• By using the Logo Editor 

• By using the primitive DEFINE. 

Procedures 



Once a procedure is defined, one way of executing it is to type 
its name at top level : 

?WELCOME 
HI 

(procedure call) 
(result) 

Another way is to call the procedure inside the definition of 
another procedure. Suppose WARMWELCOME is defined like 
this: 

TO WARMWELCOME 
WELCOME 
WELCOME 
WELCOME 
WELCOME 
WELCOME 
END 

When it 's called , WARMWELCOME executes WELCOME five 
times. 

?WARMWELCOME 
HI 
HI 
HI 
HI 
HI 

WARMWELCOME is the superprocedure that contains the 
subprocedure WELCOME. Using superprocedures and 
subprocedures, you can build structures of great complexity. 

A procedure can also be a subprocedure of itself. This is called 
recursion . You 'll find many examples of this powerful Logo 
feature throughout this manual. 

If you ask Logo to run an undefined procedure, an error 
message appears. 

?TALK 
I DON'T KNOW HOW TO TALK 

Chapter 2: Logo Grammar 

I 

I 

• 
• 
I 

I 

I 

I 

I 

I 

I 

I 

I 

• 
• 
I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• Punctuation and Inputs to Procedures 

Logo interprets every word as a request to run a procedure. 
You must use special characters to indicate when this is not the 
case. 

A word beginning with a quotation mark-for example, "HI
tells Logo that the word must be treated literally, not as a 
procedure call. Here, "HI is an input to the procedure PRINT. 

?PRINT "HI 
HI 

Numbers are like literal words , but don 't need quotation marks. 

?PRINT 5 
5 

A sequence of words surrounded by square brackets indicates 
a list. Lists can be inputs to procedures. 

?PRINT [ARE WE HAVING FUN?J 
ARE WE HAVING FUN? 

The list [ARE WE HAVING FUN] is a literal list; Logo does not 
try to execute it. The following example illustrates this more 
clearly. 

?PRINT [2 + 2J 
2 + 2 

Without the brackets, Logo will attempt to execute the 
sequence of words. 

?PRINT ARE WE HAVING FUN? 

I gg~'T ~~gw ~gw T9 ~~~ 

or 

?PRINT 2 + 2 
4 

Your procedures can also have inputs. For example: 

TO GREET :NAME (title line) 
PR "HI 
PR :NAME 
PR [HAVE A NICE DAYJ 
END 

Punctuation and Inputs to Procedures 



A word beginning with a colon (:) tells Logo that the word is a 
variable. Variables that hold the inputs to procedures are written 
on the title line after the name of the procedure. NAME is a 
variable whose value is determined when GREET is called. The 
main body of GREET contains three calls of the procedure 
PRINT (PR is the short form of PRINT). The second of these 
calls uses the current value of NAME. 

Here 's an example of a request to execute GREET at top level. 

?GREET "GUY 
HI 
GUY 
HAVE A NICE DAY 

In this case, the input is the literal word GUY; Logo makes this 
the value of NAME when it executes GREET. 

• Commands and Operations 

There are two kinds of procedures in Logo: operations and 
commands. Operations output a value to another procedure; 
commands (such as PRINT) do not. 

The primitive SUM is an operation that outputs the sum of two 
numeric inputs. In this example, the output of SUM is sent to 
the primitive command PRINT: 

?PRINT SUM 31 28 
59 

Because an operation can be used only as an input to another 
procedure, every Logo line must begin with a command. 
Otherwise, you get an error message. For example: 

?SUM 31 28 
YOU DON'T SAY WHAT TO DO WITH 59 

Your procedures can be commands or operations. The 
procedure GREET is a command. To construct operations, you 
must use the primitive OUTPUT. The procedure FLIP, for 
example, is an operation: 

TO FLIP 
IF <RANDOM 2> = 0 [OUT PUT " HEADSl 
OUTPUT "TAILS 
END 

Chapter 2: Logo Grammar 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• 
I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• Variables 

See section ''Punctuation and 
Inputs to Procedures ." 

FLIP outputs the literal word HEADS if RANDOM 2 outputs 0, 
or TAILS if RANDOM 2 outputs 1. You can pass the output 
from FLIP to PRINT: 

?PR FLIP 
HEADS 

You can think of a Logo variable as a container with a name 
on the outside and an object (a word , list, or number) inside. A 
colon in front of a word tells Logo it is a variable and makes its 
current value available to a procedure. For example: 

PRINT :JOHN 

H~!!§ b8~8 t8 188~ fer a S8ntain~r nam§9 JgHN: !f it fin9§ 8n§l it 
looks inside the container and makes whatever it finds available 
to PRINT. PRINT then displays the contents of JOHN on the 
screen . 

If no variable JOHN exists, Logo prints the error message: 

JOHN HAS NO VALUE 

You can assign a value to a variable in two ways: 

• By defining a procedure with inputs and then calling the 
procedure with specified values. 

• By using the primitive MAKE or NAME. 

MAKE requires two inputs: a word and a value. 

?MAKE "JOHN 25 
?PRINT :JOHN 
25 

In this case, the value is a number (25). However, it can be a 
word or a list as well. Consider this example: 

MAKE "X "JOHN 

Variables 



Here, MAKE has two quoted words as inputs. It puts the literal 
word JOHN inside the container X. The contents of the variable 
name JOHN from the previous example are undisturbed. So, 

?PRINT :X 
JOHN 
?PRINT :JOHN 
25 

• Global and Local Variables 

Variables created with MAKE remain in the workspace until 
erased . These variables are called global variables. There 
are also variables that remain in the workspace only as long as 
a procedure is being executed . These variables are called local 
variables. Variables that are defined as inputs to procedures 
are local variables . 

The procedure GREET can be modified to print the date. 

TO GREET :NAME 
PR :DATE 
PR "HI 
PR :NAME 
PR [HAVE A MICE DAYl 
EI'ID 

DATE does not appear on the title line of GREET, so it is a 
global variable. You can define the value of DATE at top level. 

?MAKE "DATE [MARCH 14 19841 
?GREET "BRIAN 
MARCH 14 1984 
HI 
BRIAN 
HAVE A MICE DAY 

The variable NAME is not global. After GREET stops executing, 
NAME no longer has any value. (But DATE is still in the 
workspace.) 

You could also use MAKE to define DATE inside the procedure 
GREET. It would still remain as a global variable after GREET 
executes. (The primitive LOCAL, however, lets you create local 
variables inside a procedure.) 

Chapter 2: Logo Grammar 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

• Understanding a Logo Line 

A Logo line can be longer than the line you see on the screen . 
For example: 

MAKE "MANYNAMES [MIKE BARBARA GUY JUDY ! 
SHARNEE EFFIE CHERYL] 

The exclamation mark (!) indicates that the next screen line is a 
continuation of the previous screen line. A Logo line typed from 
top level can contain a maximum of 125 characters (including 
spaces) . You end a Logo line by pressing ( RETURN ). 

Here are some guidelines to help you interpret a complex Logo 
line: 

• The first word of a Logo line must always be a command. 

• An operation is always the input to another procedure. 

• Every input to a procedure must be accounted for . 

• When the inputs to a command have been accounted for , 
the next procedure must be another command. 

Here is an example of a complex Logo line: 

PRINT SUM RANDOM :N 100 

PRINT is a command with one input, in this case the output of 
SUM. SUM requires two inputs. The first is the output of 
RANDOM , which itself requires one input (the current value of 
N). The second input to SUM is 100. 

PRINT 

I 
SUM 

~ 
RANDOM 100 

I 
: N 

Understanding a Logo Line 



If N has been assigned the value 10, 

?MAKE "N 10 

then the line will print a number in the range 1 00 .. 1 09: 

?PRINT SUM RANDOM :N 100 
1 0 1 

Chapter 2: Logo Grammar 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I • 

I 

I 

I 

I 

I 

I 

I 

Defining Procedures With TO 
21 TO 
22 END 

Chapter 3: Defining Procedures With TO 

(') 

::r 

Ill 

-o 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



• TO 

I 

With the TO primitive, you can define your own procedures at 
top level without disturbtng what's on the screen. This is 
advantageous if you need to look at instructions you have just 
used while entering a procedure definition . 

TO name (input1 input2 .. . ) (command) 

TO tells Logo that you are defining a procedure called name, 
with inputs (if any) as indicated. From top level, the prompt 
character changes from ? to > to remind you that you are 
defining a procedure. While you are defining a procedure, Logo 
does not carry out the instructions you type; it makes them part 
of the procedure definition. 

Note: You need not put a quotation mark before name 
because TO puts one there automatically. 

To complete the procedure and return Logo to top level , type 
the word END as the last line of the procedure. The special 
word END must be used alone on the last line. 

TO 



Example: 

?TO GREET 
>PRINT [HI THEREl 
>END 
GREET DEFINED 

Input to Procedure ? 

Procedure Name --'?-'T-0-S-Q---.U ARE 
Prompt Character -> F D 

>RT 
>FD 
>RT 
>FD 
>RT 
>FD 
>RT 

:SIDE 
90 
:SIDE 
90 
:SIDE 
90 
:SIDE 
90 

:SIDE 

End of Procedure Definition ->END 

. END 

Logo's Response -SQUARE DEFINED 
?_ 

If you change your mind while defining a procedure with TO, 
press [QJ-( ESC ) to stop the definition. If a procedure is already 
defined, you can 't change the definition with TO at top level. 
You must use EDIT or erase the old definition first with ERASE 
(ER). 

END (special word) 

END is necessary, when you are using TO, to tell Logo that you 
have finished defining the procedure. It must be on a line by 
itself. You must also use END to separate procedures when 
defining multiple procedures in the Logo Editor. 

Chapter 3: Defin ing Procedures With TO 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



• 
I 

I 

I 

I 

I 

I 

Using the Logo Editor 
26 How the Editor Works 
28 Editing Procedures With EDIT 
29 Typing and Editing in the Editor 
29 Moving the Cursor 
30 Inserting and Deleting Text 
31 Getting Out of the Editor 
31 Other Ways to Start Up the Editor 

Chapter 4: Using the Logo Editor 

() 

CD 



---
I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

(") 

::r 

Ql 

"0 

.... 

The Logo Editor is an interactive screen-oriented text editor, 
which provides a flexible way to define and change Logo 
instructions. The main command for starting up the Logo Editor 
is EDIT. 

This chapter gives you 

• information on how the Editor works 

• the specifics of the EDIT command 

• the rules for typing and editing in the Editor 

• a brief description of other ways to start up the Editor. 

Chapter 4: Using the Logo Editor 



• How the Editor Works 

When you call the Editor, Logo changes the screen. For 
example 

?ED IT "PO LY 

LOGO EDITOR 
======= ===== === == ========== === ========== 
TO PO LY :SIDE :ANGLE 
FD :SIDE 
RT :ANGLE 
POLY :SIDE :ANGLE 
END 

a- A accept, a- ? help , a- ES C can cel 

There is no prompt character, but the cursor shows you where 
you are typing . 

Note: The POLY procedure continues executing until you 
press @]~ to stop it. 

The text that you edit is in an area of memory called a buffer. 
When you enter the Editor, Logo displays the text from the edit 
buffer, up to 20 lines per screen . 

You can move the cursor anywhere in the text using the cursor 
control keys described later in this chapter. You can also delete 
and insert characters using the appropriate keys . 

Chapter 4: Using the Logo Editor 

II 

II 

I 

• 
I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Each key that you type makes the Editor take some action. 
Most typewriter characters (letters, numbers, punctuation, and 
(RETURN)) are simply inserted into the buffer at the place marked 
on the screen by the cursor. 

When you press (RETURN), the cursor (and any text that comes 
after it) moves to the next line, ready for you to continue typing. 

You can have more characters on a line of text than fit across 
the screen . When you get to the end of the line on the screen, 
just continue typing without pressing (RETURN). An exclamation 
mark (!) appears in the rightmost character position on the line 
and the cursor moves to the next line. 

Logo does the same thing outside of the Editor. Here is what 
the screen might look like: 

?TO PRINTMESSAGES :PERSON 
>PRINT SENTENCE :PERSON [, I AM GOING T! 
0 TYPE A VERY LONG MESSAGE FOR YOUl 
>PRINT SENTENCE [SO LONG, l :PERSON 
>END 
? 

The Editor has an auxiliary line buffer called the kill buffer. 
You can use it to move lines in a procedure or to repeat them 
in different places. The buffer can hold a maximum of 
125 characters. While this is true for the kill buffer, the length of 
a line is limited only by the length of the edit buffer (6144). 

You can use (CONTROL )-0 and (CONTROL )-GJ to delete a whole 
line and a partial line of text, respectively, and put them in the 
kill buffer. (CONTROL)-(]) inserts the same line of text later at the 
place marked by the cursor. 

(CONTROL )-GJ lets you see temporarily the graphics screen and 
its most recent contents . (CONTROL )-ffi restores the screen back 
to the Editor so you can pick up where you left off. 

When you exit from the Editor using @]-0. Logo reads each 
line in the edit buffer as if you had typed it directly from top 
level. 

If the instructions in the edit buffer define a procedure (that is, if 
there is a title line TO .. . that starts the definition), Logo 
behaves as though you had typed the definition of the 
procedure using TO. If the buffer contains a procedure 
definition, but there is no END instruction at the end of the 
buffer, Logo helps out by ending the definition for you. 

How the Editor Works 



If there are Logo instructions on lines in the edit buffer that are 
not part of the definition of a procedure, Logo carries them out 
when you exit the Editor. 

In the Editor, you may define more than one procedure at a 
time. When you exit the Editor, you can go back to your original 
graphics screen . 

• Editing Procedures With EDIT 

• 
I 

I 

I 

EDIT (ED) (command) I 
EDIT name(lisf) 

The EDIT command starts up the Logo Editor. If you give an 
input, the Editor starts up with the definition(s) of the given 
procedure(s) in the edit buffer. The input to EDIT can be a list 
of procedure names instead of a single name. In this case, all 
the procedure definitions will be brought into the Editor. 

If the procedure name has not been previously defined, the edit 
buffer contains only the title line: TO name. If no input is given, 
the edit buffer has whatever it had the last time you used the 
Editor, or is empty if it is the first time you have used the 
Editor. 

Press (Q)-0 to exit from the Editor and to have Logo read all 
the lines from the edit buffer as though it were typed at top 
level. If the end of the buffer is reached while there is a 
procedure definition in the Editor, Logo completes the 
procedure definition by inserting END. 

Press (Q)-( Esc) to stop editing without completing the definition. 
Use this key if you don 't like the changes you are making or if 
you decide not to make any changes. 

Chapter 4: Using the Logo Editor 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• Typing and Editing in the Editor 

THIS IS A TEXT LINE 

This section presents the keystrokes you use when typing in 
the Editor. Note that some keystrokes work both inside and 
outside the Editor. These are indicated by an asterisk (*) to the 
left of the keystroke. 

Note: Remember that pressing @]-G) while in the Editor 
gives you a screen of information about the editing 
keystrokes. 

Moving the Cursor . 
These keystrokes move the cursor around in the indicated 
ways. 

*G 
*G 

CD 

Example: 

Moves the cursor left one character position. 

Moves the cursor right one character position. 

Moves the cursor down one line to the next 
line. The cursor tries to go to the character 
position directly underneath its position on the 
current line. If the next line is shorter than the 
cursor position on the current line, the cursor 
goes to the end of the next line. If the cursor 
is on the last line of the edit buffer, it does not 
move. 

Cursor on L in LINE 

THIS IS ANOTHER_TEXT LINE 

A SHORTER ONE_ 

Cursor on space before TEXT 

Cursor at end of line 

THIS IS A LONGER ONE THAN CAN FIT ON TH! 

E SCREEN_ 

THIS IS THE NEXT LINE 

Typing and Editing in the Editor 

Cursor on R in LONGER 

Cursor at end of line 

Cursor on Tin NEXT 



CD 

*CQJ·G 
*(Q)-8 

*(Q)-@ or 
*(Q)-0 

*(Q)-(8 or 
*(Q)-0 

CQJ-CD 

CQJ-CD 

CQJ-CD 
through 
CQJ-® 

Moves the cursor up one line to the previous 
line. The cursor tries to go to the character 
position directly above its position on the 
current line. If the previous line is shorter than 
the cursor position on the current line, the 
cursor moves to the end of the previous line. 

Moves the cursor to the left one word. 

Moves the cursor to the right one word. 

Moves the cursor to the beginning of the 
current line. 

Moves the cursor to the end of the current 
line. . 
Moves the cursor to the top of the page. If the 
cursor is already at the top of the page, it 
moves the cursor to the top of the previous 
page and displays the new page. 

Moves the cursor to the bottom of the page. If 
the cursor is already at the bottom of the 
page, it moves the cursor to the top of the 
next page and displays the new page. 

Moves the cursor to the beginning of a line at 
a point in the edit buffer. (Q)-CD moves to the 
start of the buffer, CQJ-® moves to the end of 
the buffer, and the others move 
proportionately throughout the buffer. 

Inserting and Deleting Text 

These keystrokes insert and delete text in the indicated ways. 

(RETURN) From anywhere in the line, accepts the line as 
it is displayed and moves the cursor and the 
rest of the line to the beginning of a new line. 

*(CONTROL)-([) Erases the character to the left of the cursor. 
or *( DELETE) 

*(CONTROL l-CD Deletes the character under the cursor. 

Chapter 4: Using the Logo Editor 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

*(coNTROL l-0 Deletes all the characters on the current line, 
up to 125 characters. Logo puts this text in 
the kill buffer. 

*(coNTROL )-GJ Deletes all the characters from the present 
cursor position to the end of the current line. 
Logo puts this text in the kill buffer. 

*(CONTROL )-(B) When you are inside the Editor, (CONTROL)-(]) 
inserts a copy of the text that is in the kill buffer 
at the current cursor position. When you are 
outside the Editor, it retrieves the last line 
you typed, or whatever has been deleted with 
( CONTROL )-0 Or ( CONTROL )-GJ . 

(CONTROL)-@) Opens· a line at the present cursor position. 

Getting Out of the Editor 

Use these keystrokes to get out of the Editor. 

@J-0 Accepts your work and causes Logo to read 
the contents of the edit buffer as if you typed 
them at top level. 

Discards your work . Any changes you 've 
made are left in the edit buffer. Use it if you 
don 't like the changes you are making or you 
decide not to make changes. If you were 
defining a procedure, the definition will be the 
same as before you started editing. If you 
press @]-( ESC) by accident, you can retrieve 
the contents of the edit buffer with the EDIT 
command and no inputs. 

• Other Ways to Start Up the Editor 

EON and EONS are described in 
Chapter 8, Variables. 

You can read more about 
EOITFILE in Chapter 15, General 
File Management. 

You can use three other Logo primitives besides EDIT to start 
up the Logo Editor: EON, EONS, and EDITFILE. 

You use EON and EONS for editing variables. EON starts up the 
Editor with the variables you indicate and their corresponding 
values . You can then edit these variable names and values. 
EONS starts up the Editor with all variable names and their 
values in it. EDITFILE starts up the Logo Editor with the 
contents of the file you indicate. You can then edit the file, and 
it will be saved with the same filename. 

Other Ways to Start Up the Editor 



• Turtle Graphics 
36 Changing the Turtle's State 
36 BACK 
37 CLEARSCREEN 
37 FORWARD 
38 HIDETURTLE 
38 HOME 
38 LEFT 
39 RIGHT 
40 SETHEADING 
40 SETPOS 
41 SETX 
41 
42 

SETY 
SHOWTURTLE 

43 Getting Information About the Turtle's State 
43 HEADING 
43 POS 
44 SHOWNP 
45 TOWARDS 
45 XCOR 
46 YCOR 
47 
47 
47 
48 
48 
49 

Using the Pen and Screen 
CLEAN 
DOT 
FENCE 
FILL 
PEN DOWN 

Chapter 5: Turtle Graphics 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

50 
50 
51 
51 
52 
53 
53 

PEN ERASE 
PEN REVERSE 
PEN UP 
SETBG 
SET PC 
WINDOW 
WRAP 

54 Getting Information About the Pen and Screen 
54 BACKGROUND 
54 DOTP 
54 PEN 
55 PENCOLOR 

Chapter 5: Turtle Graphics 

<D 



I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 
I 

I 

I 

I 

I 

I 

I 

FULLSCREEN , SPLITSCREEN , 
and TEXTSCREEN are described 
in Chapter 6. 

Apple Logo has two kinds of screens: the graphics screen and 
the text screen . When you use any primitive or procedure that 
refers to the turtle , Logo shows you the graphics screen . The 
commands FULLSCREEN, SPLITSCREEN , and TEXTSCREEN 
allow you to switch between the two kinds of screens. 

Th is chapter presents a complete list of the commands that 
change what you see on the graphics screen . It also includes a 
number of operations that give you information about the state 
of the turtle , the pen , and the screen . The primitives appear in 
four groups: 

• primitives that change the turtle 's state 

• primitives that give you information about the turtle 's state 

• primitives that tell Logo to do something with the pen or 
screen 

• primitives that tell you about the state of the pen or the 
screen . 

Many of these commands are discussed in the Apple Logo II: 
An Introduction to Programming manual. This chapter assumes 
that you have already read that manual. 

Chapter 5: Turtle Graphics 



• Changing the Turtle ~s State 

This section explains all the commands that tell the turtle to do 
something. The commands appear in this order: 

BACK 
CLEARSCREEN 
FORWARD 
HIDETURTLE 
HOME 
LEFT 

RIGHT 
SETMEADIN(J 
SETPOS 
SETX 
SETY 
SHOWTURTLE 

The screen limits are 240 turtle steps high and 280 steps wide. 
Hence, when using Oartesian coordinates (as in SETPOS), you 
reach the edge of the screen when the y-coordinate is 119 (top) 
or -120 (bottom) and the x-coordinate is -140 (left edge) or 139 
(right edge). (This is true when the aspect ratio is .8.) Note that 
you need not worry about these coordinates when using 
FORWARD and BACK. 

BACK 

BACK distance (BK) (command) 

The BACK command moves the turtle distance steps back. Its 
heading does not change. If the pen is down, Logo draws a line 
the specified distance. 

ow 
BACK 70 

Chapter 5: Turtle Graphics 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• 
I 

I 

CLEARSCREEN 

CLEARSCREEN (CS) (command) 

CLEARSCREEN erases the graphics screen, puts the turtle in 
the center of the screen, and sets the turtle 's heading to 0 
(north). The center of the screen is position [0 0] and is called 
the home position. 

DO 
FORWARD 

FORWARD distance (FD) (command) 

I=O~WA~B ffi8V@§ H1@ tuFtl@ f8FWaFS 8fs1aAe~ §t@~§ iR til@ 
direction in which it is heading. If the pen is down, Logo draws 
a line the specified distance. 

Examples: 

FORWARD 70 

TO SQUARE :SIDE 
REPEAT 4 [FORWARD :SIDE RIGHT 90] 
EtiD 

SQUARE 30 

Changing the Turtle 's State 



HIDETURTLE 

HIDETURTLE (HT) (command) 

HIDETURTLE makes the turtle invisible. (The turtle draws faster 
when it is hidden.) 

HOME 

HOME (command) 

The HOME command moves the turtle to the center of the 
screen and sets its heading to 0. If the pen is down, Logo 
draws a line to the new position. The HOME command is 
equivalent to 

SETPOS [0 OJ 
SETHEADING 0 

LEFT 

LEFT degrees (LT) (command) 

The LEFT command turns the turtle left (counterclockwise) the 
specified number of degrees. The number of degrees must not 
be greater than 4.19E6. 

Chapter 5: Turtle Graphics 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Examples: 

LEFT 45 turns the turtle 45 degrees left 
LEFT -45 turns the turtle 45 degrees right 

DODD 
LEFT 45 LEFT -45 

The procedure POLY draws figures like those illustrated: 

TO POLY :SIDE :ANGLE 
FORWARD :SIDE 
LEFT :ANGLE 
POLY :SIDE :ANG~E 

END 

POLY 70 60 POLY 30 40 POLY 80 144 

RIGHT 

RIGHT degrees (RT) (command) 

The RIGHT command turns the turtle right (clockwise) the 
specified number of degrees. The number of degrees must not 
be greater than 4.19E6. 

Examples: 

RIGHT 45 turns the turtle 45 degrees right 
RIGHT -45 turns the turtle 45 degrees left 

DODD 
RIGHT 45 RIGHT -45 

Changing the Turtle 's State 



See also section "POS. '' 

TO SPI :SIDE : AN GLE :INC 
FD :SI DE RT :ANGLE 
SPI :SIDE + :INC :ANGLE : INC 
END 

SPI 5 144 3 

SETHEADING 

SETHEADING degree's (SETH) (command) 

I 

I 

I 

I 

I 
SETHEADING turns the turtle so that it is heading in the 1 
direction degrees, which can be any decimal number less 
than 4.19E6. Positive numbers are clockwise from north, 
negative numbers are counterclockwise from north. Note that 1 
RIGHT and LEFT do relative motion , but SETHEADING does 
absolute motion. 

Examples: I 
SETHEADING 45 heads the turtle northeast 
SETHEADING -45 heads the turtle northwest • 

DODD I 

SETPOS 

SETPOS [xcor ycor] (command) 

The SETPOS (for set position) command moves the turtle to the 
indicated coordinates. If the pen is down, Logo draws a line to 
the new position . 

Chapter 5: Turtle Graphics 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Example: 

SETPOS [ 1 0 0 0 J moves the turtle to a point halfway down 
the right edge of the screen. 

SETX 
SETX xear (command) 

SETX moves the turtle horizontally to a point with x-coordinate 
xear. The y-coordinate is unchanged. If the pen is down, Logo 
draws a line to the new position . 

Example: 

SET X -50 moves the turtle horizontally over towards the left 
edge of the screen . (The left edge of the screen is -140.) 

DODD 
SETX -50 SETX 2' XCOR 

SETY 
SETY year (command) 

SETY moves the turtle vertically to a point with y-coordinate 
year. The x-coordinate is unchanged. If the pen is down, Logo 
draws a line to the new position. 

Changing the Turtle 's State 



See also section "HIDETURTLE." 

Example: 

5 E T Y - 5 0 moves the turtle vertically towards the lower edge 
of the screen. (The lower edge of the screen is -120 when the 
aspect ratio is .8 .) 

DQDD 
SETY -50 SETY 2 • YCOR 

SHOWTURTLE 

SHOWTURTLE (ST) (command) 

SHOWTURTLE makes the turtle visible. 

Chapter 5: Turtle Graphics 

I 

• 
I 

I 

I 

I 

I 

• 
I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

•• 
I 

I 

• Getting Information About the Turtle~s State 

This section explains all the operations that inform you about 
the turtle's state. The primitives appear in this order: 

HEADING 
POS 
SHOWNP 
TOWARDS 
XCOR 
YCOR 

HEADING 

HEADING (operation) 

HEADING outputs the turtle's heading, a decimal number 
greater than or equal to 0 and less than 360. Logo follows the 
compass system where north is a heading of 0 degrees, 
east 90, south 180, and west 270. When you start up Logo, the 
turtle has a heading of 0 (straight up). 

Example: 

IF HEADING = 180 [PR [YOU ARE HEADED DU! 
E SOUTHll 

POS 
POS (operation) 

POS (for position) outputs the coordinates of the current 
position of the turtle in the form of a list [xcor ycor]. When you 
start up Logo, the turtle is at [0 0], the center of the turtle field. 

Getting Information About the Turtle's State 



Example: 

TO GOODVEE 
MAKE "SAVEPOS POS 
VEE 
PEN UP 
SETPOS :SAVEPOS 
PEN DOWN 
END 

TO VEE 
RT 135 FD 20 
LT 90 FD 20 
LT 45 
END 

GOODVEE 

I 

I 

I 

I 

I 

I 

• 
GOODVEE calls the procedure VEE and then restores the 1 
turtle 's position to wherever it was before GOODVEE was 
called . 

SHOWNP 

SHOWNP (operation) 

SHOWNP outputs TRUE if the turtle is not hidden, FALSE 
otherwise. 

Chapter 5: Turtle Graphics 

I 

I 

I 

I 

I 

• 
I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

TOWARDS 

TOWARDS [xear year] (operation) 

TOWARDS outputs a heading that would make the turtle face in 
the direction indicated by [xear year]. 

Example: 

SETHEAD I NG TOWARDS [ 2 0 10 l heads the turtle in the 
direction of the position [20 1 0] . 

DO 
XCOR 

XCOR (operation) 

XCOR outputs the x-coordinate of the current position of the 
turtle. 

Examples: 

?PRINT XCOR 
1 0. 0 

SETX 2 * XCOR moves the turtle horizontally to a position 
twice as far from the y-axis as it used to be. 

DO 
Getting Information About the Turtle 's State 



YCOR 
YCOR (operation) 

YCOR outputs the y-coordinate of the current position of the 
turtle . 

Examples: 

?PRINT YCDR 
50.0 

SETY 2 * YCOR moves the turtle vertically to a position 
twice as far from the x-axis as it used to be. 

DCJ 

Chapter 5: Turtle Graphics 

I 

I 

I 

I 

I 

I 

I 

• 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• Using the Pen and Screen 

This section explains all the commands that direct Logo to do 
something with the pen or screen. The commands appear in 
this order: 

CLEAN 
DOT 
FENCE 
FILL 
PEN DOWN 
PEN ERASE 

CLEAN 

CLEAN 

PEN REVERSE 
PEN UP 
SETBG 
SET PC 
WINDOW 
WRAP 

(command) 

The CLEAN command erases the graphics screen but doesn't 
affect the turtle. 

DOT 

DOT [xcor year] (command) 

The DOT command puts a dot of the current pen color at the 
specified coordinates, without moving the turtle. It does not 
draw a line, even if the pen is down. 

Using the Pen and Screen 



See also sections "WINDOW" and 
"WRAP." 

I 
Example: 

DDT [ 12 0 0 l puts a dot near the right edge of the screen. I 

CJD I 

FENCE 

FENCE (command) 

The FENCE command fences in the turtle within the edges of 
tho oo,...oon . If y o '-' t ,... y to ~o· .., o tho t u t"t lo b ·oyo·nd tho ·odgoo o f 

the screen, an error occurs and the turtle does not move. If the 
turtle is already out of bounds, Logo repositions it at its home 
position [0 0]. 

Example: 

FENCE 
cs 
RT 5 
FD 500 

gives the error message TURTLE OUT OF BOUNDS. 

FILL 

FILL (command) 

The FILL command fills the shape outlined by the current pen 
color with the current pen color. If the turtle is not enclosed, the 
background is filled with the current pen color. Logo ignores 
lines of colors other than the current pen color when 
determining what to fill. 

Chapter 5: Turtle Graphics 

I 

I 

I 

• 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Example: 

TO FILLAT :POS 
LOCAL "POSITION 
MAKE "POSITION POS 
PU SETPOS :POS PD FILL 
PU SETPOS :POSITION PD 
END 

This procedure moves the turtle to a specified position, fills , and 
returns the turtle to its original position. 

REPEAT 4 
[FD 50 AT 90] 

PEN DOWN 

PEN DOWN 

PU AT 45 FD 20 PD FILL 

(PO) (command) 

The PENDOWN command puts the turtle's pen down. When the 
turtle moves, it draws lines in the current pen color. When you 
start up Logo, the pen is down. 

PEN DOWN FD 100 

Using the Pen and Screen 



PENERASE 
PEN ERASE (PE) (command) 

PENERASE puts the turtle 's eraser down. When the turtle 
moves, it erases lines it passes over. To take away the eraser, 

J I -=- -- J 

Lise either PENDOWN or PENUP. 

PENERASE FD 100 

PEN REVERSE 
PEN REVERSE (PX) (command) 

PENREVERSE puts the reversing pen down. When the turtle 
moves, it tries to interchange the pen color and background 
color, drawing where there aren 't lines and erasing where there 
are. The exact effect of this reversal is complex ; what it looks 
like on the screen depends on the pen color, background color, 
and whether lines are horizontal or vertical. The best results are 
on a black background. 

PEN REVERSE FD 100 

Chapter 5: Turtle Graphics 

I 

I 

I 

I 

I · 
I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

·I 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

PEN UP 

PEN UP (PU) (command) 

The PENUP command lifts the pen up: when the turtle moves, it 
does not draw lines. The turtle cannot draw until the pen is put 
down again. 

PENUP FD 100 

SETBG 

SETBG colornumber (command) 

The SETBG (for set background) command sets the 
background color to the color represented by colornumber, 
where colornumber is one of the following numbers: 

0 
1 
2 
3 
4 
5 
6 

black 
white 
green 
violet 
orange 
blue 
black (for black-and-white TV) 

Using the Pen and Screen 



See the example included with the 
BACKGROUND command. 

Note that background colors 0 and 6 are both black; 6 is the 
recommended background for a black-and-white screen, since 
the pen draws thinner lines with a 6 background . 

There are certain unavoidable limitations when you draw with a 
colored pen on a colored background. Black and white pens 
draw successfully on any background; any colored pen draws 
successfully on a black or white background. If you try to draw 
a green or violet line on an orange or blue background, or an 
orange or blue line on a green or violet background, the 
following will happen: 

orange or blue background: 

green or violet background: 

green becomes orange 
violet becomes blue 

orange becomes green 
blue becomes violet 

If you change the background after you 've already drawn with a 
colored pen, the results may be blotchy. 

SET P C 

SETPC colornumber (command) 

I 

I 

I 

I 

I 

I 

I 

I 

I 
The SETPC (for set pencolor) command sets the color of the • 
J?eFt t G emem umoer, wne e orornumoer IS one or tne rouowmg 
numbers: 

0 black I 
1 white 

I 
2 green 
3 violet 
4 orange 
5 blue 

I 

I 

I 

Chapter 5: Turtle Graphics I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

For information on the interaction 
between pen and background 
colors , see section "SETBG" in this 
chapter. 

See also sections "FENCE" and 
"WRAP. " 

See also sections "FENCE" and 
"WINDOW. " 

If the pen color does not look right on your screen , try adjusting 
the tint control. However, when two lines of different colors are 
horizontally close to each other, one of them may be the wrong 
color, no matter what you do. 

WINDOW 

WINDOW (command) 

The WINDOW command makes the turtle field unbounded; what 
you see is a portion of the turtle field as if looking through a 
small window around the center of the screen . When the turtle 
moves beyond the visible bounds of the screen, it continues to 
move but can 't be seen~ The screen is 240 turtle steps high 
(only if the scrunch factor is .8) and 280 steps wide. The entire 
turtle field is 40,960 steps high and 32,768 steps wide. 
Changing WINDOW to FENCE or WRAP when the turtle is off 
the screen sends the turtle to its home position [0 0]. 

Example: 

?WINDOW 
?CS RT 5 
?FD 500 
?PRINT POS 
43.5779 498.097 

WRAP 

WRAP (command) 

The WRAP command makes the turtle field wrap around the 
edges of the screen: if the turtle moves beyond one edge of the 
screen, it continues from the opposite edge. The turtle never 
leaves the visible bounds of the screen; when it tries to, it 
wraps around to the other side. 

Example: 

?WRAP 
?CS RT 5 
?FD 500 
?PRINT POS 
43.5779 18.0973 

Using the Pen and Screen 



• Getting Information About the Pen and Screen 

This section explains all the operations that inform you about 
the state of the pen or screen. The primitives appear in this 
order: 

BACKGROUND 
DOTP 
PEN 
PEN COLOR 

BACKGROUND 
BACKGROUND (BG) (operation) 

I 

I 

I 

I 
BACKGROUND outputs a number representing the color of the 
background : I 
0 
1 
2 
3 
4 
5 
6 

black 
white 
green 
violet 
orange 
blue 
black (for black-and-white TV) 

When Logo first starts up, BACKGROUND outputs 0. 

DOTP 
DOTP ( xcor year] (operation) 

The DOTP operation outputs TRUE if there is a dot on the 

I 

I 

I 

I 

I 
screen at the indicated coordinates . If there is no dot, DOTP 1 
outputs FALSE. 

PEN I 
PEN (operation) 

PEN outputs the current state of the turtle 's pen. The states are 
PENDOWN , PENERASE, PENUP, and PENREVERSE. When the 
turtle first starts up, PEN outputs PENDOWN. 

Chapter 5: Turtle Graphics 



~ 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

PENCOLOR 

PENCOLOR (PC) (operation) 

PENCOLOR outputs a number representing the current color of 
the pen: 

0 black 
1 white 
2 green 
3 violet 
4 orange 
5 blue 

When Logo first starts up, PENCOLOR outputs 1. 

Getting Information About the Pen and Screen 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 
I 



I 

I 

I 

I 

I 

I • 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Text and Screen Commands 
60 Primitives Affecting Text on the Screen 
60 C!:::I;ARTI;XT 
60 
61 
61 
62 
63 
63 
63 

CURSOR 
FULLSCREEN 
SETCURSOR 
SETWIDTH 
SPLITSCREEN 
TEXTSCREEN 
WIDTH 

63 Special Control Characters That Change Screen Use 
63 CONTROL-L 
64 CONTROL-S 
64 CONTROL-T 

Chapter 6: Text and Screen Commands 

CD 



I 

I 

I 

I 

I 

-
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

.SCRUNCH and .SETSCRUNCH 
are described in Chapter 18. 

Your Apple computer has 24 lines of text on the screen, with 40 
or 80 characters on each line, depending on the current screen 
width setting. You can use the screen entirely for text or entirely 
for graphics. The Apple also lets you use the top 20 lines for 
graphics and the bottom four for text at the same time. When 
you start up Logo, the entire screen is available for text. 

Your screen can be either 40 or 80 characters wide. You can 
switch between the two settings with the SETWIDTH primitive. 

Note: If you have an Apple lie, Logo will be in 40-column 
mode when you start up. 

If you have an Apple lie, Logo will read the state of the 
80/40-column switch to determine which mode to start in. 

There are two ways to change the use of your screen: 

• With regular Logo commands, which you can type at top 
level or insert within procedures (FULLSCREEN, 
SPLITSCREEN, TEXTSCREEN, and SETWIDTH) 

• With special control characters , which are read from the 
keyboard and obeyed almost immediately (while a procedure 
continues running); these cannot be placed within 
procedures ((CONTROL )-(D, (CONTROL)-@, and ("""'c"""'O,...,.,NT=R-=cOL---..)-(D). 

In addition to those described in this chapter, the primitives 
.SCRUNCH and .SETSCRUNCH are related to screen 
commands. 

Chapter 6: Text and Screen Commands 



I 
• Primitives Affecting Text on the Screen 

I 

See section "SETCURSOR." 

This section presents the commands that affect the screen. The 
commands are 

CLEARTEXT 
CURSOR 
FULLSCREEN 
SETCURSOR 
SETWIDTH 
SPLITSCREEN 
TEXTSCREEN 
WIDTH 

CLEARTEXT 

CLEARTEXT (CT) (command) 

CLEARTEXT clears the entire screen and puts the cursor at 
the upper-left corner of the text part of the screen. If you have 
been using the split screen, the cursor is on the fourth line 
from the bottom. 

CURSOR 

CURSOR (operation) 

CURSOR outputs a list of the column and line numbers of the 
cursor position. The upper-left corner of the screen is [0 0]. The 
upper-right is [39 0] if the screen width is 40, and [79 0] if the 
screen width is 80. 

Exam ple: 

The procedure TAB tabs over to the next tab stop after 
something is typed. Tab stops are located in every eighth 
column. 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

TO TAB I 
TYPE CHAR 32 
IF <REMAINDER FIRST CURSOR 8) > 0 [TABl I 
END 

I 

Chapter 6: Text and Screen Commands I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

TO FLAVORCHART 
TYPE "FLAVOR TAB TAB PR "RATING PR [! 
] 

TYPE "CHOCOLATE TAB PR 97 
TYPE "STRAWBERRY TAB PR 73 
TYPE "BANANA TAB TAB PR 19 
END 

?FLAVORCHART 
FLAVOR 

CHOCOLATE 
STRAWBERRY 
BANANA 

FULLSCREEN 
FULLSCREEN 

RATING 

97 
73 
19 

(FS) (command) 

The FULLSCREEN command devotes the entire screen to 
graphics. Only the turtle field shows; any text you type will be 
invisible to you, although Logo will still carry out your 
instructions. 

If Logo needs to display an error message while you are using 
the full graphics screen, Logo splits the screen. 

SETCURSOR 
SETCURSOR [columnnumber linenumber] (command) 

SETCURSOR sets the cursor to the position indicated by 
columnnumber and linenumber. Lines on the screen are 
numbered from 0 to 23. Character positions (columns) are 

Primitives Affecting Text on the Screen 



See section "WIDTH .'" 

numbered from 0 to 39 if the screen width is 40 and 0 to 79 if 
the screen width is 80. 

0 39 

I 

I 

I 

I 

23 11 

An error occurs if the line number is not between 0 and 23, or if I 
the column number is not between 0 and 38 (78 if the screen 
width is 80). If columnnumber or linenumber is a decimal I 
number, Logo truncates it to an integer. 

Examples: 

SETCURSOR [ 20 12 l puts the cursor near the middle of the I 
screen . 

TO MOVECURSOR :X :Y 
SETCURSOR LIST (:X + FIRST CURSOR> (:Y 
+ LAST CURSOR> 
END 

?CLEARTEXT 
?PRINT "A MOVECURSOR 2 5 PRINT "B 

SETWIDTH 

SETWIDTH width (command) 

The SETWIDTH command sets the width of the screen to width 
characters per line. The width input must have a value of 
either 40 or 80. The default setting for the screen width 
depends on which computer you 're using. If you 're using an 
Apple lie, the default setting for the screen width is 40. If you 're 
using an Apple lie, the default setting is whatever the 
80/40-column switch is set to. 

Chapter 6: Text and Screen Commands 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

See section "SETWIDTH " for 
changing the screen width. 

Example: 

?SETWIDTH 80 changes the screen width to 80 characters 
per line. 

SPL/TSCREEN 

SPLITSCREEN (SS) (command) 

SPLITSCREEN devotes the top 20 lines of the screen to 
graphics and the bottom tour lines to text. 

TEXTSCREEN 

TEXTSCREEN (TS) (command) 

TEXTSCREEN devotes the entire screen to text; the graphics 
screen is invisible to you until a graphics procedure is run. 

WIDTH 

WIDTH (operation) 

WIDTH outputs the current width of the screen, either 40 or 80. 
When you start up Logo, WIDTH outputs either 40, it you're 
using an Apple lie, or whatever the 80/40-column switch is set 
to, it you 're using an Apple lie. 

• Special Control Characters That Change Screen Use 

This section covers the special control characters that you can 
use to change the screen use. These control characters are 

CONTROL-L 
CONTROL-S 
CONTROL-T 

CONTROL·L 

(CONTROL )-GJ (special character) 

CONTROL-L is similar in effect to FULLSCREEN. You can use 
it at any time. 

Special Control Characters 



I 
If you press (CONTROL )-(I) while in the Logo Editor, the graphics 
screen appears. (Use (coNTROL )-(I) to restore the Editor text I 
screen.) 

CONTROL-S I 
( CONTROL )-(]) (special character) 

(CONTROL )-(]) is similar in effect to SPLITSCREEN. You can use 
it at any time. 

CONTROL·T 

( CONTROL )-(I) (special character) 

( coNTRoL l-ffi is similar iA @ff@et ta T§XT§eREEN: it eli3vati3s til§ 
entire screen to text. You can use it at any time. (CONTROL )-(I) 
restores the Editor text screen if you have just used 
( CONTROL )-(I) from the Editor. 

Chapter 6: Text and Screen Commands 

I 

I 

I 

I 

I 

I 
I 

I 

I 

I 

I 

I 

I 



I 
() 

:::r 
Ql 

I 
"'0 

(!) 

~ 

I --l 

I 

I 

I • Words and Lists 
67 Words: Some General Information 

I 
68 Lists: Some General Information 
69 Breaking Words and Lists Into Pieces 
70 BUTFIRST 

I 
71 BUTLAST 
71 FIRST 
73 ITEM 

I 
73 LAST 
74 MEMBER 
75 Putting Words and Lists Together 

I 
76 FPUT 
76 LIST 
77 LPUT 

I 
78 PARSE 
78 SENTENCE 
80 WORD 

I 
8 1 Examining Words and Lists 
81 ASCII 
82 BEFOREP 
83 CHAR 

I 85 COUNT 
8 5 EMPTYP 
8 7 EQUALP 

I 88 LISTP 
88 MEMBERP 
89 NUMBERP 

I 90 WORDP 
90 Changing the Case of Words 
90 LOWERCASE 

I 91 UPPERCASE 

I Chapter 7: Words and Lists 165 



I 

I 

I 

I 

I 

I 

I 
I 

I 

-
I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

This chapter describes the primitives that work on two types of 
objects in Logo: words·and lists. With the primitives described 
in this chapter, you can 

• break words and lists into pieces 

• put words and lists together 

• examine words and lists 

• change the case of words and lists. 

• Words: Some General Information 

A word is made up of characters . Here are some examples of 
words: 

HELLO 
X 
314 
3.14 
R2D2 
PIG LATIN 
PIG. LATIN 
PIG-LATIN (typed as PIG\-LATIN) 
HEN3RY 
WHO? 
!NOW! 

Each character is an element of the word . The word HEN3RY 
contains six elements: 

H E N 3 R y 

Words: Some General Information 



See Appendix E, Pars ing, for more 
details on how Logo treats special 
characters. 

See the section of this chapter on 
the EMPTYP primitive for examples 
of the empty word. 

A word is usually delimited by spaces, which means that there 
is a space before the word (unless it is preceded by : or ") and 
a space after the word . The spaces set the word off from the 
rest of the line. In addition to spaces, these characters delimit 
words: 

[]() =<>+-* 

To treat any of these characters or the space as a normal 
alphabetic character, put a backslash (\) before it. 

Example: 

?PR "PIG\ -LATIN 
PIG-LATIN 

I 
Note that the quotation mark character (") and the colon (:) are 1 
not word delimiters. 

You can also have an empty word , which is a word with no 
elements. You type in the empty word by typing 
II 

I 

I 
• Lists: Some General Information 

A list is made up of Logo objects , each of which is a word or 
another list. You indicate that something is a list by enclosing it 
in square brackets ([ ]). Here are some examples of lists: 

[HELLO THERE, OLD CHAP] 
[X Y Z] 
[HELLO] 
[[HOUSE MAISON] [WINDOW FENETRE) [DOG C! 
HI EN]] 
[HAL [C3PO R2D2] [QRZ] [ROBBIE SHAKEY]] 
[1 [1 2] [17 [17 2]]] 
[] 

The list [HELLO THERE, OLD CHAP] contains four elements: 

HELLO 
THERE, 
OLD 
CHAP 

Note that the list [1 [1 2] [17 [17 2]]] contains only three 
elements, not six; the second and third elements are themselves 
lists: 

Chapter 7: Words and Lists 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

See the section of this chapter on 
the EMPTYP primitive for examples 
of the empty list. 

Element 1: 1 
Element 2: (1 2] 
Element 3: (17 (17 2]] 

The list [], a list with no elements , is the empty list. 

• Breaking Words and Lists Into Pieces 

The operations that break words and lists into pieces are 

BUTFIRST (BF) 
BUTLAST (BL) 
FIRST 
ITEM 
LAST 
MEMBER 

The following chart shows how FIRST and BUTFIRST (BF) 
work. If you want to try out these operations, use the SHOW 
command. 

FIRST "JOHN J 

BF "JOHN OHN 

FIRST [MARY JOHN MARY 
BILL] 

BF [MARY JOHN [JOHN BILL] 
BILL] 

FIRST [[MARY JOHN] [MARY JOHN] 
BILL] 

BF [[MARY JOHN] [BILL] 
BILL] 

FIRST [MARY [JOHN MARY 
BILL]] 

BF [MARY [JOHN [[JOHN BILL]] 
BILL]] 

FIRST [ ] or " Error 

BF [ ] or " Error 

LAST and BUTLAST (BL) work in the same way except that 
they work on the last element. 

Breaking Words and Lists Into Pieces 



BUTFIRST 

BUTFIRST object (BF) (operation) 

BUTFIRST outputs all but the first element of object. BUTFIRST 
of the empty word or the empty list is an error. 

Examples: 

Operation 

BUTFIRST [EFFIE MANIATIS] 

BUTFIRST "DOGS 

BUTFIRST [DOGS] • 

BUTFIRST [THE DOGS] 

BUTFIRST [[THE A AN] [DOG 
CAT MOUSE] [BARKS 
MEOWS]] 

BUTFIRST " 

BUTFIRST [] 

TO TRIANGLE :OBJECT 

Output 

[MANIATIS] 

OGS 

[ ] (the empty list) 

[DOGS] 

[[DOG CAT MOUSE] [BARKS 
MEOWS]] 

Error 

Error 

IF EMPTYP :OBJECT [STOPl 
PR :OBJECT 

!ANGLE BU I S : OBJEC 
END 

?TRIANGLE "STROLL 
STROLL 
TROLL 
ROLL 
OLL 
LL 
L 

?TRIANGLE [KANGAROOS JUMP GRACEFULLY] 
KANGAROOS JUMP GRACEFULLY 
JUMP GRACEFULLY 
GRACEFULLY 

Chapter 7: Words and Lists 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• 
I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

BUTLAST 

BUTLAST object (BL) (operation) 

BUTLAST outputs all but the last element of object. 

Examples: 

Operation Output 

BUTLAST [BARB G. MINGlE] [BARB G.] 

BUTLAST "FLOWER FLOWE 

BUTLAST [FLOWER] 

BUTLAST [[THE A AN( [BIRD [[THE A AN]] 
BEE FLOWER]] 

E5 UT LAST " Error 

BUTLAST [] Error 

The input to the following procedure should be an adjective 
ending in Y: 

TO COMMENT :WORD 
PR SE [YOU ARE l :WORD 
PR SE [I AMl WORD BUTLAST :WORD "IER 
END 

?COMMENT "FUNNY 
YOU ARE FUNNY 
I AM FUNNIER 

FIRST 

FIRST object (operation) 

FIRST outputs the first element of object. FIRST of the empty 
word or the empty list is an error. Note that FIRST of a word is 
a single character; FIRST of a list can be a word or a list. 

Breaking Words and Lists Into Pieces 



I 
Examples: 

Operat ion Output I 
FIRST [HOUSE MOUSE HOUSE 
LOUSE] I 
FIRST "HOUSE H 

FIRST [HOUSE] HOUSE I 
Operat ion Output I 
FIRST [[THE A AN] [UNICORN [THE A AN] 

I RHINO] [SWIMS FLIE:S 
GROWLS RUNS]] 

FIRST " Error I 

FIRST [] Error I 

TO PRINTDOWN : INPUT I 
IF EMPTYP : INPUT [STOP J 
PR FIRST :INPUT 
PRINTDOWN BF : INPUT I 
END 

?PRINTDOWN 11 MOUSE I M 
0 
u I s 
E 
?PRINTDOWN [A STRAWBERRY SUNDAEJ 

I A 
STRAWBERRY 
SUNDAE 

I 

I 

I 

721 Chapter 7: Words and Lists I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

ITEM 

ITEM integer object (operation) 

ITEM outputs the element of object whose position within object 
corresponds to integer. For example, if integer is 3, ITEM 

outputs the third eiemeiit iii the oB]ec:t. ob]ea is a word or a 
list. An error occurs if integer is greater than the length of 
object or if object is the empty word or list. 

Examples: 

?MAKE "PETS [DOG CAT HAMSTER CANARY] 
?PR ITEM 3 :PETS 
HAMSTER 
?PR ITEM "APPLE 
A 

LAST 

LAST object (operation) 

LAST outputs the last element of object. LAST of the empty 
word or the empty list is an error. 

Examples: 

Operation 

LAST [SHARNEE MARIO 
RENAUD] 

LAST "VANILLA 

LAST [VANILLA] 

LAST [[THE A] FLAVOR IS 
[VANILLA CHOCOLATE 
STRAWBERRY]] 

LAST " 

LAST [] 

Output 

RENAUD 

A 

VANILLA 

[VANILLA CHOCOLATE 
STRAWBERRY] 

Error 

Error 

Breaking Words and Lists Into Pieces 



TO PRINTBACK :INPUT 
IF EMPTYP :INPUT [STOPJ 
PR LAST :INPUT 
PRINTBACK BL :INPUT 
END 

?PRINTBACK "GANDALF 
F 
L 
A 
D 
N 
A 
G 

MEMBER 

MEMBER object1 object2 (operation) 

MEMBER outputs the part of object2 in which object1 is the 
first element. If object1 is not an element of object2, MEMBER 
outputs the empty list or the empty word. This operation is 
useful for accessing information in a file or for sorting long lists. 

Examples: 

?SHOW MEMBER "A [A B CJ 
[A B CJ 

?SHOW MEMBER "Bugs [Learn Bugs Logol 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 
[Bugs Logo] II 
?SHOW MEMBER [Piaget Papertl [Children 
Computers [Teach Activity] [Piaget Pap! I 
e r t] ] 
[[Piaget Papert]J 

?PR MEMBER "ABC "XYZABCDEF I 
ABCDEF 

I 

I 

I 

Chapter 7: Words and Lists I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• Putting Words and Lists Together 

Operation 

FPUT 

LIST 

LPUT 

SE 

WORD 

FPUT 

LIST 

LPUT 

SE 

WORD 

FPUT 

LIST 

LPUT 

SE 

WORD 

The operations that put words and lists together are 

FPUT 
LIST 
LPUT 
PARSE 
SENTENCE (SE) 
WORD 

The following chart compares FPUT, LIST, LPUT, SENTENCE 
(SE), and WORD. 

Input 1 Input 2 Output 

"LOGO "TIME Error 

"LOGO "TIME [LOGO TIME] 

"LOGO "TIME Error 

"LOGO "TIME [LOGO TIME] 

"LOGO "TIME LOGOTIME 

"TURTLE [IS FUN] [TURTLE IS FUN] 

'TURTLE [IS FUN] [TURTLE [IS FUN] 

"TURTLE [IS FUN] [IS FUN TURTLE] 

"TURTLE [IS FUN] [TURTLE IS FUN] 

"TURTLE [IS FUN] Error 

[AND MORE] [TO COME] [[AND MORE] TO 
COME] 

[AND MORE] [TO COME] [[AND MORE] [TO 
COME]] 

[AND MORE] [TO COME] [TO COME [AND 
MORE]] 

[AND MORE] [TO COME] [AND MORE TO 
COME] 

[AND MORE] [TO COME] Error 

Putting Words and Lists Together 



I 
Operation Input 1 Input 2 Output 

FPUT "COMPUTERS [ ] [COMPUTERS] I 
LIST "COMPUTERS [ ] [COMPUTERS []] 

LPUT "COMPUTERS [ ] [COMPUTERS] I 
SE "COMPUTERS [ ] [COMPUTERS] 

WORD "COMPUTERS [ ] Error I 

FPUT I 
FPUT object list (operation) 

The FPUT (for first put) operation outputs a new list formed by 
I 

putting object at the beginning of list. 

Examples: I 
Operation Output 

I FPUT "HAMSTER (DOG CAT] [HAMSTER DOG CAT] 

FPUT [THE A AN] [CUP [[THE A AN] CUP GLASS] 
I GLASS] 

FPUT "A [] (A] 

I 
LIST I 
LIST object1 object2 (operation) 
(LIST object1 object2 object3 object4 ... ) 

I 
The LIST operation outputs a list whose elements are object1, 
object2, and so on . I 

I 

I 

I 

761 Chapter 7: Words and Lists I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Examples: 

Operation 

LIST "ROSE [TULIP 
CH RYSANTH EMU M] 

(LIST "ROSE "TULIP 
"CHRYSANTHEMUM) 

LIST [A QUICK BROWN FOX] 
[LOOKS AT THE LAZY FROG] 

LIST "A[] 

Output 

[ROSE [TULIP 
CHRYSANTHEMUM]] 

[ROSE TULIP 
CHRYSANTHEMUM] 

[[A QUICK BROWN FOX] 
[LOOKS AT THE LAZY 
FROG]] 

[A []] 

When LIST is used with a single input, parentheses are needed 
around the expression. For example: 

?MAKE "ANIMALS "TOADS 
?SHOW CLIST :ANIMALS> 
[TOADS] 

LPUT 

LPUT object list (operation) 

The LPUT (for last put) operation outputs a new list formed by 
putting object at the end of list. 

Examples: 

Operation 

LPUT "GERBIL [HAMSTER 
GUINEA.PIG] 

LPUT [THE A AN] [CAT 
ELEPHANT] 

LPUT "A[] 

LAST LPUT "GERBIL 
[HAMSTER GUINEA.PIG] 

Output 

[HAMSTER GUINEA.PIG 
GERBIL] 

[CAT ELEPHANT [THE A 
AN]] 

[A] 

GERBIL 

Th§ fg!lgwinQ prgg§gyr§ E!QQ§ a m~w gntry tg an 
English-Spanish dictionary. 

Putting Words and Lists Together 



TO NEWENTRY :ENTRY 
MAKE "DICTIONARY LPUT :ENTRY :DICTIONAR! 
y 
END 
?MAKE "DICTIONARY [[HOUSE CASAl [SPANIS! 
H ESPANOLl [HOW GOMOll 
?SHOW :DICTIONARY 
[[HOUSE CASAl [SPANISH ESPANOLl [HOW CO! 
MD l l 
?NEWENTRY [TABLE MESAl 
?SHOW :DICTIONARY 
[[HOUSE CASAl [SPANISH ESPANOLl [HOW CO! 
MOl [TABLE MESAll 

PARSE 

PARSE word (operation) 

PARSE outputs a list that is obtained from parsing word. 
PARSE is useful for converting the output of READWORD into 
a list. 

Examples: 

?SHOW PARSE "word 
[word] 
?MAKE "Input READWORD 
dogs cats hamsters 
?SHOW :Input 
dogs cats hamsters 
?SHOW PARSE :Input 
[d ogs cais hamstersj 

SENTENCE 
SENTENCE object1 object2 (SE) 
(SENTENCE object1 object2 object3 .. . ) 

(operation) 

SENTENCE outputs a list made up of the contents in its inputs. 

Chapter 7: Words and Lists 



I 

I 

I 

I 

I 

I 

I 

I 

I 

Examples: 

Operation 

SENTENCE "PAPER "BOOKS 

SENTENCE [PAPER] 
[BOOKS] 

SENTENCE "APPLE[PEAR 
PLUM BANANA] 

SENTENCE [A QUICK 
BROWN FOX] [LOOKS AT 
THE LAZY FROG] 

Output 

[PAPER BOOKS] 

[PAPER BOOKS] 

[APPLE PEAR PLUM 
BANANA] 

[A QUICK BROWN FOX 
LOOKS AT THE LAZY FROG] 

The following procedure prints a birth announcement: 

TO ANNOUNCE :FIRSTNAME :LASTNAME 
PR [WE'RE HAPPY TO ANNOUNCE THE BIRTH 0! 
Fl 
PR < SE : F I RSTNAME "X. : LASTNAME > 
PR [11 POUNDS 11 OZl 
END 

?ANNOUNCE "ERIC "GEE\-SILVERMAN 
WE'RE HAPPY TO ANNOUNCE THE BIRTH OF 
ERIC X. GEE-SILVERMAN 
11 POUNDS 11 OZ 

Further Examples: 

Operation 

(SENTENCE "APPLE "PEAR 
"BANANA) 

(SENTENCE "MONET) 

SENTENCE "MONET [] 

Output 

[APPLE PEAR BANANA] 

[MONET] 

[MONET] 

When you give SENTENCE a single input, you need to put 
parentheses around the expression. For example: 

?MAKE "ANIMALS "KITTENS 
?SHOW <SENTENCE :ANIMALS> 
[KITTENSl 

Compare the outputs when SENTENCE and LIST are applied to 
lists that contain other lists: 

Putting Words and Lists Together 



Operation Output 

SENTENCE [THE DOG] 
[LIKES [GREEN MICE]] 

[THE DOG LIKES [GREEN 
MICE]] 

LIST [THE DOG] [LIKES 
[GREEN MICE]] 

[[THE DOG] [LIKES [GREEN 
MICE]]] 

WORD 
WORD word1 word2 
(WORD word1 word2 word3 ... ) 

WORD outputs a wo~d made up of its inputs. 

Examples: 

Operation 

WORD "SUN "SHINE 

Output 

SUNSHINE 

(WORD "CHEESE "BURG "ER) CHEESEBURGER 

WORD "BURG [ER] Error 

WORD "S "MILES SMILES 

(operation) 

The procedure SUFFIX puts AY at the end of its input: 

TO SUFFIX : WD 
OUTPUT WORD :WD 11 AY 
END 

?PR SUFFIX 11 ANTEATER 
ANTEATERAY 

The essence of the procedure SUFFIX is incorporated into PIG 
and LATIN , which translate words and lists into a dialect of Pig 
Latin : 

TO LATIN :SENT 
IF EMPTYP :SENT [OP [JJ 
OP SE PIG FIRST :SENT LATIN BF :SENT 
END 

Chapter 7: Words and Lists 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

TO PIG :WORD 
IF MEMBERP FIRST :WORD [A E I 0 U YJ [0! 
P WORD :WORD "AYJ 
OP PIG WORD BF :WORD FIRST :WORD 
END 

?PR LATIN [NO PIGS HAVE EVER SPOKEN PIG! 
LA TIN AMONG HUMANS] 
ONA Y IGSPAY AVEHAY EVERAY OKENSPAY IGPA! 
Y ATINLAY AMONGAY UMANSHAY 
? 

• Examining Words and Lists 

See also section "CHAR." Refer to 
Appendix F for a complete list of 
the ASCII codes. 

The operations that you use in checking words and lists are 

ASCII 
BEFOREP 
CHAR 
COUNT 
EMPTYP 

ASCII 

ASCII character 

EQUALP 
LISTP 
MEMBERP 
NUMBERP 
WORDP 

(operation) 

ASCII outputs the American Standard Code for Information 
Interchange (ASCII) code for character. If the input word 
contains more than one character, ASCII uses only its first 
character. 

Exam ples: 

ASCII "B outputs 66. 

The procedure SECRETCODE makes a new word by using the 
Caesar cipher (adding 3 to each letter). Note that this example 
does not work with lowercase letters. 

TO SECRETCODE : WD 
IF EMPTYP : WD [OUTPUT "J 
OUTPUT WORD SECRETCODELET FIRST :WD SEC! 
RETC ODE BF :WD 
END 

Examining Words and Lists rB1 



See Appendix F for a list of all 
ASCII codes and their meanings. 

TO SECRETCODELET :LET 
MAKE 11 LETNUM CASC I I :LET> + 3 
IF :LETNUM >ASCII uz [MAKE 11 LETNUM :LE! 
TNUM - 261 
OUTPUT CHAR :LETNUM 
END 

?PR SECRETCODE 11 CAT 
FDW 
?PR SECRETCODE 11 CRAYON 
FUDBRQ 

BEFOREP 

BEFOREP word1 word2 (operation) 

BEFOREP outputs TRUE if word1 comes before word2. To 
make the comparison, Logo uses the ASCII codes of the 
characters in the words. Note that all uppercase letters come 
before all lowercase letters. 

Examples: 

Operation 

BEFOREP "A "a 

BEFOREP "apple "Zoo 

BEFOREP UPPERCASE 
"apple UPPERCASE "Zoo 

Output 

TRUE 

FALSE 

TRUE 

The following SORT procedure takes a list of words and 

eutf)Ut§ Hl€lrn alfJRab€ltieally. 
TO SORT :ARG :LIST 
IF EMPTYP :ARG [OP :LISTl 
MAKE 11 LIST INSERT FIRST :ARG :LIST 
OP SORT BF :ARG :LIST 
END 

TO INSERT :A :L 
IF EMPTYP :L [OP ( LIST :A >l 
IF BEFOREP :A FIRST :L [OP FPUT :A :Ll 
OP FPUT FIRST :L INSERT :A BF :L 
END 

Chapter 7: Words and Lists 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Refer to Appendix F for a complete 
list of the ASCII codes . 

Try this: 

MAKE "SORTLI ST SORT [A D E F T C Z J [ J 

PR : SORTLI ST 
A C D E F T Z 

Then type 

MAKE "SORTLIST SORT [FOO BAR BAZJ :SOR! 
TLIST 
PR :SORTLIST 
A BAR BAZ C D E F FOO T Z 

CHAR 
CHAR integer (operation) 

The CHAR operation outputs the character whose ASCII code is 
integer. An error occurs if integer is not the ASCII code for any 
character. 

Characters can be normal (white characters on black 
background) or inverse video (black characters on white 
background). The ASCII codes are organized as follows: 

0- 31 
32- 47 
48- 57 
58- 63 
64- 90 
91 - 96 
97 - 122 
123 - 127 
128 - 154 
155 - 191 
192- 218 
219- 255 

uppercase letters 
punctuation 
digits 
punctuation 
uppercase letters 
punctuation 
lowercase letters 
punctuation 
inverse-video uppercase letters 
inverse-video digits and punctuation 
special graphics characters 
inverse-video lowercase letters 

Examining Words and Lists 



To change a normal character to inverse video, use the 
following procedure: 

Examples: 

TO CONVERT :CHAR 
IF <ASCI I :CHAR> > 127 [OP :CHARl 
IF DR <ASCII :CHAR>< 64 AND <ASCII :CH! 
AR> > 96 <ASCII :CHAR>< 128 [OP CHAR 1! 
28 + ASCI I :CHAR l [ OP CHAR 64 + ASCI I : ! 
CHAR] 
END 

INVERSE displays a word in inverse video: 

I 

I 

I 

I 

I · 
TO INVERSE : W{]RD I 
IF EMPTYP :WORD [OP "l 
OP WORD CONVERT FIRST :WORD INVERSE BF 
:WORD I 
END 

?PRINT INVERSE "YOGURT 
YOGURT 
? 

Chapter 7: Words and Lists 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 
I 

I 

I 

I 

I 

I 

• 
I 

I 

I 

I 

COUNT 

COUNT object (operation) 

COUNT outputs the number of elements in object, which is a 
word or a list. 

Examples: 

Operation 

COUNT [A QUICK BROWN 
t;tJ"l:tN I lA UUIL,K t::SHUWN 

FOX] 

COUNT [A [QUICK BROWN] 
FOX] 

COUNT "COMPUTER 

Output 

4 
~ 

3 

8 

?MAKE "CLASS [JOSE ANGELA WINIFRED LIN! 
G NORBERT BRIAN MARIAJ 
?PR COUNT :CLASS 
7 

The following procedure prints a random element of a word or a 
list: 

TO RANPICK :OBJECT 
PR ITEM C1 + RANDOM COUNT :OBJECT> :DB! 
JECT 
END 

?RANPICK :CLASS 
SRI AN 

EMPTYP 

EMPTYP object (operation) 

EMPTYP outputs TRUE if object is the empty word or the 
empty list; otherwise it outputs FALSE. 

Examining Words and Lists 



Examples: 

Operation 

EMPTYP 3 

EMPTYP BUTFIRST 
"UNICORN 

Output 

FALSE 

FALSE 

EMPTYP BUTLAST "U 

EMPTYP BUTFIRST 
[UNICORN] 

TRUE 

TRUE 

This procedure, TALK, matches animal sounds to animals: 

TO TALK :ANIMA~S :SOUNDS 
IF DR EMPTYP :SOUNDS EMPTYP :ANI MALS [P! 
R [THAT'S ALL THERE IS !J STOPJ 
PR SE FIRST :ANIMALS FIRST :SOUNDS 
TALK BF :ANIMALS BF :SOUNDS 
END 

?TALK [DOGS BIRDS PIGSJ [BARK CHIRP DIN ! 
KJ 
DOGS BARK 
BIRDS CHIRP 
PIGS OINK 
THAT ' S ALL THERE IS! 

The REVPRINT procedure reverses elements in a word or list. 

TO REVPRINT :THING 
IF EMPTYP :THING [ PR [ J STOP] 
TYPE LAST :THING 
IF LISTP :THING [TYPE CHAR 32] 
REVPRINT BL :THING 
END 

?REVPRINT "ELEPHANT 
TNAHPELE 
?REVPRINT " PUMPERNICKEL 
LEKCINREPMUP 
?REVPRINT [ALISON LOVES 
MATTHEW LOVES ALISON 
?REVPRINT "OTTO 
OTTO 

Chapter 7: Words and Lists 

MATTHEW] 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

EQUALP 

EOUALP object1 object2 (operation) 

See the list of infix-form operations EQUALP outputs TRUE if object1 and object2 are equal 
in Chapter 9. numbers, identical words , or identical lists; otherwise EQUALP 

outputs FALSE. This operation is equivalent to the equal sign 
(= ). 

Examples: 

Operation 

EQUALP "RED FIRST [RED 
YELLOW] 

EQUALP 1 00 50 * 2 

EQUALP [THE A AN] [THE A] 

EQUALP "[] 

Output 

TRUE 

TRUE 

FALSE 

FALSE (the empty word and 
the empty list are not identical) 

The following operation tells whether its first input (a character) 
is an element of its second input (a word). 

TO INP :CHAR :WORD 
IF EMPTYP :WORD [OUTPUT "FALSEl 
IF EQUALP :CHAR FIRST :WORD [OUTPUT "TR! 
UEl 
OUTPUT INP :CHAR BUTFIRST :WORD 
END 

?PR INP "A "TEACUP 
TRUE 
?PR I NP II I "SAUCER 
FALSE 

Examining Words and Lists 



LISTP 

LISTP object (operation) 

I 

I 
LISTP outputs TRUE if object is a list; otherwise it outputs 1 
FALSE. 

Examples: 

Operation Output 

LISTP 3 FALSE 

LISTP [3] TRUE 

LISTP [] TRUE 

LISTP " FALSE 

LISTP [A B C [D E] [ F [G]]] TRUE 

LISTP BUTFIRST FALSE 
"CHOCOLATE 

LISTP BUTFIRST TRUE 
[CHOCOLATE] 

MEMBERP 

MEMBERP object1 object2 (operation) 

MEMBERP outputs TRUE if object1 is an element of object2; 
otherwise it outputs FALSE. 

Examples: 

Operation 

MEMBERP 3 [2 5 [3] 6] 

Output 

FALSE 

MEMBERP 3 [2 53 6] TRUE 

MEMBERP [2 5] [2 5 3 6] FALSE 

MEMBERP "BIT "RABBIT TRUE 

MEMBERP [FLORIDA TRUE 
GEORGIA] [[FLORIDA 
GEORGIA] IOWA] 

Chapter 7: Words and Lists 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

i 
I 

I 

I 

I 

I 

Operation 

MEMBERP [FLORIDA 
GEORGIA] [FLORIDA 
GEORGIA IOWA] 

MEMBERP BUTFIRST "FOG 
[OE OF OG OH] 

Output 

FALSE 

TRUE 

The following procedure determines whether its input is a 
vowel : 

TO VOWELP :LETTER 
OUTPUT MEMBERP :LETTER [A E I 0 UJ 
END 

?PR VOWELP "F 
FALSE 
?PR VOWELP "A 
TRUE 

NUMBERP 

NUMBERP object (operation) 

NUMBERP outputs TRUE if object is a number; otherwise it 
outputs FALSE. 

Examples: 

Operation Output 

NUMBERP 3 TRUE 

~UM~~~~ f3j F~L§~ 
NUMBERP 3.14E23 TRUE 

NUMBERP [] FALSE 

NUMBERP " FALSE 

NUMBERP BUTFIRST 3165.2 TRUE 

NUMBERP BUTFIRST FALSE 
[ELEPHANT] 

Examining Words and Lists 



WORDP 

WORDP object (operation) 

WORDP outputs TRUE if object is a word ; otherwise it outputs 
FALSE. 

Note: In Logo, numbers are considered words. 

Examples: 

Operation Output 

WORDP "ZAM TRUE 

WORDP [E GRESS] FALSE 

WORDP 3 TRUE 

WORDP [3] FALSE 

WORDP [] FALSE 

WORDP " TRUE 

WORDP BUTFIRST "BURG TRUE 

WORDP BUTFIRST [BURG] FALSE 

• Changing the Case of Words 

The operations that change the case of words are 
LOWERCASE and UPPERCASE. 

LOWERCASE 

LOWERCASE word 

LOWERCASE outputs word in all lowercase letters. 

Chapter 7: Words and Lists 

(operation) 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• 
I 

I 

Examples: 

Operation 

LOWERCASE "Hello 

LOWERCASE "BIG 

TO YESP :WORD 

Output 

hello 

big 

IF EQU ALP LOWERCASE :WORD "yes [OP "TRU! 
E l [ OP "FALSE l 
END 

?PR YESP " YES 
TRUE 

?PR YESP " SEVE N 
FALSE 

UPPERCASE 
UPPERCASE word 

UPPERCASE outputs word in all uppercase letters. 

Examples: 

Operation 

UPPERCASE "Hello 

UPPERCASE "little 

TO PRIMARYP :WORD 

Output 

HELLO 

LITTLE 

(operation) 

IF MEMBERP UPPERCASE :WORD [RED BLUE YE! 
LLOWl [OP " TRUEl [OP "FALSEl 
END 

?PR PRIMARYP "red 
TRUE 

?PR PRIMARYP "green 
FALSE 

Changing the Case of Words 



.,. 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I I () 

I 
=r 

Ill 

I 
"0 

CD 

I 0> 

I 

I 

I • Variables 
95 Variables: Some General Information 

I 
96 EDN 
97 EONS 
98 LOCAL 

I 
99 MAKE 

100 NAME 
101 NAMEP 

I 
101 THING 

I 

I 

I 

I 

I 

I 

I 

I I Chapter 8: Variables 193 



I 

I 

I 

• 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

·I 

I 

I 

I 

I 

_I 

This chapter gives you some general information about how 
Logo uses variables and then provides descriptions of the 
primitives that you use with variables. The primitives are 

EDN 
EONS 
LOCAL 
MAKE 
NAME 
NAMEP 
THING 

CD 

CXl 

• Variables: Some General Information 

For more information on variables , 
see Chapter 2. 

A variable is a container that holds a Logo object. The 
container has a name and a value . The object held in the 
container is called the variable 's value. You create a variable in 
one of two ways: either by using the MAKE or NAME 
command , or by using procedure inputs. 

Logo has two kinds of variables : local variables and global 
variables . Variables used as procedure inputs are local to that 
procedure. They exist only as long as the procedure is running, 
and will disappear from your workspace after the procedure 
stops running. 

Normally a variable created by MAKE is a global variable. The 
LOCAL command lets you change those variables into local 
Vgri gQI§§. Thi§ ggn Q§ V§ry !J§§f!J I if yQ!J W§nt tg §VQiQ gi!Jtt§rin9 
up your workspace with unwanted variables . 

Variables : Some General Information 



. EON 

EON name(list) (command) 

The EON (for edit name) command starts up the Logo Editor 
with the named variable(s) and corresponding value(s). You can 
then edit these variable name(s) and value(s). When you exit the 
Editor, Logo reads the contents of the edit buffer as if you had 
typed each line from top level. Whatever variables and values 
have been changed in the Editor are changed in Logo. 

Example: 

?EDN "LANGUAGE, 

The screen now looks like: 

LOGO EDITOR 
======================================== 
MAKE "LANGUAGE [ENGLISH FRENCH SPANISH] 

6-A accept, 6-? help, 6-ESC cancel ----
You can now edit this variable as you wish and then press 
Cill-0 to exit the Editor. 

Chapter 8: Variables 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



. EONS 
I 

I 

I 

I 

EONS (command) 

EONS (for edit names) starts up the Logo Editor with all variable 
names and their values in it. You can then edit these variables' 
names and values. When you exit the Editor, Logo reads the 
contents of the edit buffer as if you had typed each line from 
top level. Whatever variables and values have been changed in 
the Editor are changed in Logo. 

Example: 

?PONS 
MAKE "ANIMAL "GI'BBON 
MAKE "SPEED 55 
MAKE "AIRCRAFT [JET HELICOPTER] 
?EONS 

The display now looks like: 

LOGO EDITOR 
======================================== 
MAKE "ANIMAL "GIBBON 
MAKE "SPEED 55 
MAKE "AIRCRAFT [JET HELICOPTER] 

6-A accept, 6-? help, 6-ESC cancel 

EONS 



• LOCAL 

You can then edit the names so they look like this list: 

MAKE "ANIMAL "GRYFFIN 
MAKE "SPEED 55 
MAKE "AIRCRAFT [JET HELICOPTER BLIMPJ 

Then, 

?PONS 
MAKE "ANIMAL "GRYFFIN 
MAKE "SPEED 55 
MAKE "A I RCRAFT [JET HELl COPTER BLIMP l 

LOCAL name(list) (command) 

I 

I 

I 

I 

I 

I 

The LOCAL command makes its input(s) local to the procedure I 
within which the LOCAL occurs. A local variable is accessible 
only to that procedure and to procedures it calls; in this regard I 
it resembles inputs to the procedure. 

Example: 

TO YESNO :QUESTION 
LOCAL "ANSWER 
PR :QUESTION 
MAKE "ANSWER FIRST READLIST 
IF EQUALP :ANSWER "YES [OUTPUT "TRUEJ 
OUTPUT "FALSE 
END 

TO GREET 
PR [WHAT IS YOUR FULL NAME?) 
MAKE "ANSWER READLIST 
IF YESNO [DO YOU LIKE YOUR NAME?l [PR [! 
THAT'S GOODJ l [PR [TOO BADJ l 
PR SENTENCE [NICE TO MEET YOU, l :ANSWE! 
R 
END 

?GREET 
WHAT IS YOUR FULL NAME? 
ROBIN GLASS 
DO YOU LIKE YOUR NAME? 

Chapter 8: Variables 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

r. 
I • MAKE 

I 

I 

I 

I 

NO 
TOO BAD 
NICE TO MEET YOU, ROBIN GLASS 

Imagine what happens if the LOCAL command is omitted from 
YESNO. Each procedure uses a variable named ANSWER to 
hold the user's answer to a question. Because the variables are 
not local, the procedure YESNO destroys the value that GREET 
expects to have in that variable: 

?GREET 
WHAT IS YOUR FULL NAME? 
ROBIN GLASS 
DO YOU LIKE YOUR NAME? 
NO 
TOO BAD 
NICE TO MEET YOU, NO 

MAKE name object (command) 

The MAKE command puts object in name's container, that is, it 
gives the variable name the value object. 

Examples: 

MAKE "JOB 259 
?PR :JOB 
259 
?MAKE "JOB "WELDER 
?PR :JOB 
WELDER 
?MAKE "WELDER 32 
?PR :WELDER 
32 
?PR THING :JOB 
32 
?MAKE :JOB [SHARNEE CHAITJ 

At this point :JOB is WELDER , and THING :JOB is [SHARNEE 
CHAIT] . 

?PRINT "JOB 
JOB 
?PRINT :JOB 

MAKE 



. NAME 

WELDER 
?PRINT THING "JOB 
WELDER 
?PRINT THING :JOB 
SHARNEE CHAIT 

TO WEATHER 
PR [WHAT'S THE WEATHER LIKE TODAY?) 
MAKE "ANSWER READLIST 
IF :ANSWER = [RAINING] [PR [I WISH IT W! 
OULD STOP RAINING] STOPl 
IF :ANSWER = [SUNNY l [ PR [I HOPE IT STA! 
YS SUNNY l STOP l 
PR <SE [I WONDER IF IT WILL BEl :ANSWER! 

"TOMORROW.> 
END 

?WEATHER 
WHAT'S THE WEATHER LIKE TODAY? 
SUNNY 
I HOPE IT STAYS SUNNY 
?WEATHER 
WHAT'S THE WEATHER LIKE TODAY? 
CLOUDY 
I WONDER IF IT WILL BE CLOUDY TOMORROW. 
?WEATHER 
WHAT'S THE WEATHER LIKE TODAY? 
RAINING 
I WISH IT WOULD STOP RAINING 

NAME object name (command) 

• 
• 
• 
I 

• 
I 

I 

I 

I 

I 

I 

I 
The NAME command puts object in name's container, that is, it 1 
gives the variable name the value object. 

• 
I 

I 

Chapter 8: Variables I 



I 

I 

I 

I 

I 

I • NAMEP 

I 

I 

I 

I 

~ I 

• • THING 

I 

I 

I 

I 

I 

Examples: 

?NAME 259 "JOB 
?PR :JOB 
259 
?NAME "WELDER "JOB 
?PR :JOB 
WELDER 

NAME is equivalent to MAKE with the order of the inputs 
reversed. Thus NAME "WELDER "JOB has the same effect as 
MAKE "JOB "WELDER. 

NAMEP word (operation) 

NAMEP outputs TRUE if word has a value, that is , if :word 
exists ; it outputs FALSE otherwise. 

Examples: 

?PR NAMEP "ANIMAL 
FALSE 
?MAKE "ANIMAL "AARDVARK 
?PR :ANIMAL 
AARDVARK 
?PR NAMEP "ANIMAL 
TRUE 

The procedure INC, listed with the THING operation that 
follows , shows a use of NAMEP . 

THING name (operation) 

THING outputs the thing in the container name, that is, the 
value of the variable name. THING "ANY is equivalent to 
:ANY. 

THING 



For other examples , see section 
"MAKE." 

Example: 

This procedure increments (adds 1 to) the value of a variable: 

TO INC :X 
IF NOT NAMEP :X [STOPl 
IF NUMBERP THING :X [MAKE :X 1 + THI NG 
:X l 
END 

Note the use of MAKE ;X rather than MAKE "X. It is not X that's 
being incremented. The value of X is not a number, but the 
name of another variable. It is that second variable that is 
incremented. 

?MAKE "TOTAL 7 
?PR :TOTAL 
7 
?INC "TOTAL 
?PR :TOTAL 
8 
?INC "TOTAL 
? PR :TOTAL 
9 

Chapter 8: Variables 

I 

• 
I 

I 

I 

• 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 





; - -

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I • 
I 

I 

I 

This chapter presents all the Logo operations that manipulate 
numbers. Logo has twO' kinds of notation for expressing 
arithmetic operations: prefix notation and infix notation. Prefix 
notation means that the name of the procedure comes before 

A W'l 111 \.;~,U 1.,;) U l UI. 1. 1 1\.t I l U I II V VI \,II \,; }J I VVV U\.A I \J VVIIIV'-' -VI VI-

its inputs. With infix notation, the name of the procedure 
goes between its inputs, not before them. 

This chapter contains 

• a general introduction to Logo 's arithmetic operations 

• descriptions of the prefix-form operations 

• descriptions of the infix-form operations. 

Arithmetic Operations: Some General Information 

Logo has two kinds of numbers: integers and decimals. 

3 is an integer 
3.14 and 3. are decimal numbers 

Logo provides primitives that let you add, subtract, multiply, and 
divide numbers. You can find sines, cosines, arctangents, and 
square roots ; and you can test whether a number is equal to, 
less than, or greater than another number. 

Arithmetic Operations 



Scientific notation is a way of 
expressing a number with an 
exponent. 

Chapter 7, Words and Lists , 
describes the EQUALP primitive. 

The result of an arithmetic operation can be either an integer or 
a decimal, depending on the operation: 

• INT, INTQUOTIENT, RANDOM, REMAINDER, and ROUND 
always output integers. 

• ARCTAN , COS, SIN , SORT, QUOTIENT, and I always output 
decimal numbers. 

• The rest output integers if all their inputs are integers, and 
decimal numbers if one or more of their inputs are decimal 
numbers ( +, -, *). 

Thus 7 I 2 is 3.5 (a decimal number), but INTQUOTIENT 
7 2 is 3 (an integer). 

Further, 3.5 + 6.5 is 10.0 (a decimal number), but 3 + 7 is 10 
(an integer). Note that 3 + 7.0 is 10.0 (a decimal number). 

The largest possible integer in Logo is 2147483647, which is 
231 -1; the smallest is -2147483647, which is -(231 -1). 

Decimal numbers have six digits of accuracy and can include an 
exponent that ranges from 38 to -38. Logo uses exponential form 
(scientific notation) to represent numbers that cannot be written 
as just six digits. Here are some examples: 

1.0E1 0 means 1010
, or 10,000,000,000 

1.0N1 0 means 10'10
, or 0.00000000001 

Notice that the N indicates a negative exponent. 

Logo rounds off a decimal number if it contains more than six 
digits. For example, the number 2718281828459.045 is 
converted to 2.71828E12. 

Addition , subtraction , multiplication , and division are available in 
infix notation. The name of an infix procedure goes between its 
inputs, not before them. Logo also provides addition and 
multiplication in prefix form as operations taking two or more 
inputs. For example, the following expressions are equivalent: 

2 + 1 
SUM 2 1 

In addition to those primitives listed here, the primitive EQUALP 
is often used in conjunction with arithmetic operations. EQUALP 
is equivalent to the infix operation equal sign ( = ), described in 
this chapter. 

Chapter 9: Arithmetic Operations 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• How Logo Evaluates Math Opera tions 

When a Logo line has several math operations, Logo evaluates 
them according to the operations' precedence. The order of 
precedence from highest to lowest is as follows: 

•. I 

+ -' 
> , < ,= 

Other math 
operations 

Thus, 

cos 25 + 10 

is read as 

cos (25 +10) 

Unary minus. Indicates a negative number (-3) 
or the additive inverse of the input (-XCOR). 

Multiplication and division . 

Addition and subtraction. 

Greater than. less than, equals. 

This group includes user-defined operations, 
as well as primitive operations such as SIN , 
DIFFERENCE, and SUM. 

You can change the order of precedence just listed by using 
parentheses. Logo follows the standard mathematical practice 
of performing operations enclosed in parentheses before 
others. If there are several operations within one set of 
parentheses, Logo uses the order of precedence just given. 

Example: 

?PR 2 * 4 + 8 I 4 
1 0. 0 
?PR 2 * (4 + 8 I 4) 
1 2. 0 
?PR <2 * 4 + 8) I 4 
4.0 

• Prefix-Form Operations 

This section explains the prefix-form operations. which appear 
in this order: 

ARCTAN 
cos 

RANDOM 
REMAINDER 

Prefix-Form Operations 



The arctangent of a number is 
an angle whose tangent is that 
number. 

DIFFERENCE 
FORM 
INT 
INTQUOTIENT 
PRODUCT 
QUOTIENT 

ARCTAN 

ARCTAN number 

RERANDOM 
ROUND 
SIN 
SORT 
SUM 

(operation) 

ARCTAN outputs the arctangent (inverse tangent) of number. 
The output is a decimal number and is in degrees, not radians. 
The output of ARCTAN is always a number between -90 
and 90. If number is close to -1 , the output may be unreliable. 

Examples: 

Operation 

ARCTAN 2 

ARCTAN 444 

Output 

63.4348 

89.871 

The following procedures define ARCSIN and ARCCOS: 

TO ARCSIN :X 
OUTPUT ARCTAN :X I CSQR i 1 - :X 1 :X) 
END 

TO ARCCOS :X 
OUTPUT ARCTAN CSQRT 1 - :X * :X> I :X 
END 

cos 
COS degrees (operation) 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 
The COS operation outputs the cosine of degrees. The output I 
is a decimal number. Degrees cannot be greater than 4.19E6. If 
it is, an error occurs. 

I 

I 

Chapter 9: Arithmetic Operations I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Examples: 

Operation 

cos 60 

cos 30 

Output 

0.5 

0.866026 

Here is a definition of the tangent function: 

TO TAN :ANGLE 
OUTPUT <SIN :ANGLE> I COS :ANGLE 
END 

?PR TAN 45 
1 . 0 

DIFFERENCE 

DIFFERENCE number1 number2 (operation) 

DIFFERENCE outputs the result of subtracting number2 from 
number1. 

Examples: 

Operation 

DIFFERENCE 7 1 

DIFFERENCE (5+6) (3*7) 

DIFFERENCE 10 5 

DIFFERENCE 6.3 107.4 

FORM 

FORM number field precision 

Output 

6 

-10 

5 

-1 01 .1 

(operation) 

FORM outputs number as a word in the number of spaces 
indicated by field, with precision digits after the decimal point. 
The input for field must be an integer from 1 through 128. The 
input for precision must be an integer from 0 through 6. 

If number is too small to use the full field spaces, Logo adds 
blank space before the number. Note that the decimal point (.) 
and the minus sign (-) both count as an element in field. 

Prefix-Form Operations 



FORM works with all integers, but only some decimal numbers. 
These are 

-999999.0 through -0 .000001 
0.000001 through 999999.0 

Logo prints all other decimal numbers in scientific notation, and 
these cannot be handled by FORM. Instead, FORM outputs the 
number right justified in a word with field characters. 

Note: Decimal numbers have only six significant digits no 
matter how many you enter. Even when numbers are used in 
coniunction with FORM. thev are reduced to six sianificant 
digits before being passed to FORM. 

An error occurs if field is 0 or is less than the number of digits 
before the decimal point in number. If precision is 0, FORM 
outputs number as an integer. Trailing zeros are added if 
precision is greater than the number of digits after the decimal 
point in number. 

If FORM outputs a number with fewer digits after the decimal 
point than the input number, the last digit is the result of 
truncating the missing digits. 

FORM is useful when you are trying to print columns of 
numbers in an unvarying format. 

Chapter 9: Arithmetic Operations 



I 

I 

I 

I 

I See also section "ROUND. " 

I 

I 

I 

'I 

I 

I . 

Examples: 

Operation 

FORM 27.33 10 1 

FORM 27.33 10 3 

FORM 2.7E20 15 2 

?MAKE "A -8.8888 
?PR FORM :A 9 3 

8.888 

/NT 

INT number 

Output 

27.3 

27.330 

2.7E20 

(operation) 

The INT operation outputs the integer portion of number. Logo 
removes the decimal portion of the number, if one exists. The 
maximum integer is 2,147,483,647. 

Examples: 

Operation Output 

INT 5.2129 5 

INT 5.5129 5 

INT 5 5 

INT -5 .8 -5 

INT -12.3 -12 

The procedure INTP tells whether its input is an integer: 

TO INTP :N 
IF NOT NUMBERP :N [OP [NOT A NUMBERll 
OP CCOUNT :N> = (COUNT INT :N> 
END 

?PRINT INTP 17 
TRUE 
?PRINT INTP 100 I 8 
FALSE 
?PRINT INTP "ONE 

Prefix-Form Operations 



NOT A NUMBER 
?PRINT INTP SQRT 50 
FALSE 

INTQUOTIENT 

INTQUOTIENT integer! integer2 (operation) 

INTOUOTIENT outputs the result of dividing integer! by 
integer2, truncated to an integer. An error occurs if integer2 
is 0. If either input is a decimal number, it is truncated. 

Examples: 

Operation 

INTOUOTIENT 12 5 

INTQUOTIENT -12 5 

INTQUOTIENT 9 2 

INTQUOTIENT 3 0 

PRODUCT 

PRODUCT number! number2 

Output 

2 

-2 

4 

Error 

(PRODUCT number! number2 number3 ... ) 
(operation) 

I 

I 

I 

I I 

I 

I 

I 

.I 

I 

I 
PRODUCT outputs the product of its inputs. It is equivalent to . -
the * infix-form operation. With one input, PRODUCT outputs its 
input. 

Examples: I · 
Operation 

PRODUCT 6 2 

(PRODUCT 2 3 4) 

PRODUCT 2.5 4 

TO CUBE :NUM 

Output 

12 

24 

10.0 

OP <PRODUCT :NUM :NUM :NUM> 
END 

Chapter 9: Arithmetic Operations 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

?PR CUBE 2 
8 

QUOTIENT 

QUOTIENT number1 number2 (operation) 

QUOTIENT outputs the result of dividing number1 by number2. 
It is equivalent to the I infix-form operation. Number2 must not 
be 0. If it is, an error occurs. 

Examples: 

Operation Output 

QUOTIENT 12 5 2.4 

QUOTIENT -12 5 -2.4 

QUOTIENT 6 2.5 2.4 

QUOTIENT 3.2 0 Error 

RANDOM 

RANDOM integer (operation) 

RANDOM outputs a random non-negative integer less than 
integer. 

Example: 

RANDOM 6 can output 0, 1, 2, 3, 4, or 5. The following 
program simulates a roll of a six-sided die: 

TO D6 
OUTPUT 1 + RANDOM 6 
END 

?PR D6 
3 
?PR D6 
5 
?PR D6 
3 

Prefix-Form Operations 



REMAINDER 

REMAINDER integer1 integer2 (operation) 

REMAINDER outputs the remainder obtained when integer1 is 
divided by integer2. The remainder is always an integer. If 
integer1 and integer2 are integers, this is integer1 mod integer2. 
If integer1 and integer2 are not integers , they are truncated. 
/nteger2 must not be 0. If it is, an error occurs. 

Examples: 

Operation 

REMAINDER 12 10 

REMAINDER 12 5 

REMAINDER 12 15 

REMAINDER -12 5 

Output 

2 

2 

12 

-2 

The following procedure tells whether its input is even: 

TO EVENP :NUMBER 
OP 0 = REMAINDER :NUMBER 2 
END 

?PR EVENP 5 
FALSE 
?PR EVENP 12462 
TRUE 

The following more general procedure tells whether its first 
input is a divisor of its second input: 

TO DIVISORP :A :B 
OP 0 = REMAINDER :B :A 
END 

?PR DIVISORP 3 15 
TRUE 
?PR DIVISORP 4 15 
FALSE 

Chapter 9: Arithmetic Operations 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 
I I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

RERANDOM 

RERANDOM (command) 

RERANDOM makes RANDOM behave reproducibly: after you 
run RERANDOM, calls to RANDOM generate the same 
sequences of numbers from the beginning each time. 

Example: 

TO DICE :THROWS 
IF :THROWS = 0 [STOPl 
PR 1 + RANDOM 6 
DICE :THROWS -
END 

?DICE 6 
3 
2 
6 
6 
3 

?DICE 6 
5 
5 
5 
1 
3 
1 
?RERANDOM 
?DICE 6 
3 
2 
6 
6 
3 

Prefix-Form Operations ms 



See also the examples in section 
"INT." 

See also section "COS. " 

?RERANDOM 
?DICE 6 
3 
2 
6 
6 
3 
1 

ROUND 
ROUND number (operation) 

The ROUND operation outputs number rounded off to the 
nearest integer. The maximum integer is 2,147,483,647. 

Examples: 

Operation Output 

ROUND 5.2129 5 

ROUND 5.5129 6 

ROUND .5 1 

ROUND -5.8 -6 

ROUND -12.3 -12 

SIN 

SIN degrees (operation) 

The SIN operation outputs the sine of degrees. Degrees cannot 
be greater than 4.19E6. If it is, an error occurs. 

Example: 

SIN 30 outputs 0.5 

Chapter 9: Arithmetic Operations 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

SQRT 

SORT number (operation) 

The SORT operation outputs the square root of number. The 
value number must not be negative or an error will occur. 

Examples: 

Operation 

SORT 25 

SORT 259 

Output 

5.0 

16.0935 

The following procedure outputs the distance from the turtle 's 
position to HOME. 

TO FROM.HOME 
OP SQRT SUM XCOR * XCOR YCOR * YCOR 
END 

The procedure DISTANCE takes any two positions as inputs, 
and outputs the distance between them: 

TO DISTANCE : POS 1 : POS2 
OP SQRT SUM SQ <<FIRST :POS1> - FIRST :! 
POS2> SQ <<LAST :POS1> - LAST :POS2 
END 

TO SQ :N 
OP : N * : N 
END 

?PR DISTANCE [-70 101 [50 601 
130.0 

SUM 
SUM number1 number2 
(SUM number1 number2 number3 ... ) 

(operation) 

The SUM operation outputs the sum of its inputs. SUM is 
equivalent to the + infix-form operation. 

With one input, SUM outputs its input. 

Prefix-Form Operations 



Examples: 

Operation 

SUM 52 

(SUM 1 3 2 -1) 

SUM 2.3 2.561 

• Infix-Form Operations 

Output 

7 

5 

4.861 

This section explains the infix-form operations, which appear in 
this order: 

+ 

< 

> 

Note that because the symbols for these operations are 
word-separators , spaces are optional before and after all of 
them except the slash (see the following explanation) . Thus the 
following are equivalent: 

2 + 5 
2 + 5 

The only exception is the slash (/) , which indicates division . You 
must always put spaces before and after the slash character. 

4 I 8 
3 I 9 

The reason for this is that the I sign is used in pathnames. 

Chapter 9: Arithmetic Operations 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Plus Sign 

number1 + number2 (infix-form operation) 

The plus sign ( + ) outputs the sum of its inputs. It is equivalent 
to SUM, which is a prefix-form operation. 

Examples: 

Operation 

5 + 2 

1 + 3 + 2 + 1 

2.54 + 12.3 

Minus Sign 

number1 - number2 

Output 

7 

7 

14.84 

(infix-form operation) 

The minus sign (-) outputs the result of subtracting number2 
from number1 . If number1 is missing and there is no space 
after the minus sign , it outputs the opposite of number2 
(O-number2). 

Examples: 

?PR 7 -
6 
?PR 7-1 
6 
?PR PRODUCT 7 - 1 
-7 
?PR -3 
-3 
?PR - 3 
-3 
?PR -3 - -2 
- 1 

Infix-Form Operations 



For more detailed information on 
how Logo treats the minus sign , 
see Appendix E, Parsing . 

The procedure ABS outputs the absolute value of its input: 

TO ABS :NUM 
OP IF :NUM < 0 [-:NUMl [:NUMl 
END 

?PR ABS -35 
35 
?PR ABS 35 
35 

NEAR tells whether two numbers are close in value: 

TQ N~AR :A :§ 
OP CABS :A - :B> < .01 
END 

?PR NEAR XCOR 100 
TRUE 
?PR XCOR 
99.9934 

Note that there is a potential ambiguity between the minus sign 
with one input and the minus sign with two inputs. Logo 
resolves this ambiguity as follows: 

7-1 is 6 
7 - 1 is also 6 
7- 1 is also 6 
But 7 -1 is a pair of numbers (7 and -1 ). 

Multiplication Sign 

number1 * number2 (infix-form operation) 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

The asterisk (*) outputs the product of its inputs. It is equivalent I 
to PRODUCT, which is a prefix-form operation . 

Examples: I 
Operation 

6 * 2 

2 * 3 * 4 

1.3 * 1.3 

Chapter 9: Arithmetic Operations 

Output 

12 

24 

1.69 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 
The BEFOREP operation is 
described in Chapter 7. 

I 

I 

I 

I 

The procedure FACTORIAL outputs the factorial of its input. For 
example, FACTORIAL 5 outputs the product of 5 * 4 * 3 * 2 * 1. 

TO FACTORIAL :N 
IF :N = 0 [OP 1J [OP :N * FACTORIAL :N-1J 
END 

?PR FACTORIAL 4 
24 
?PR FACTORIAL 
1 

Division Sign 

number1 I number2 (infix-form operation) 

The slash (/) outputs number1 divided by number2. It is the 
same as tne Q UOT IENT operation. Number2 must not be 0. 

Examples: 

Operation 

6 1 3 

8 I 3 

2.5 I 3.8 

0 I 7 

7 I 0 

Less Than Sign 

number1 < number2 

Output 

2.0 

2.66667 

0.657895 

0.0 

Error 

(infix-form operation) 

The less than sign ( < ) outputs TRUE if number1 is less than 
number2; otherwise it outputs FALSE. It is similar to the 
BEFOREP operation but takes only numbers as inputs. 

Examples: 

Operation 

2 < 3 

-7 < -10 

Infix-Form Operations 

Output 

TRUE 

FALSE 



The equal sign is equivalent to 
EOUALP, which is described in 
Chapter 7. 

Equal Sign 

object1 = object2 (infix-form operation) 

The equal sign( = ) outputs TRUE if object1 and object2 are 
equal numbers, identical words, or identical lists; otherwise it 
outputs FALSE. 

Note that the use of parentheses affects how Logo evaluates 
the equal sign, as shown in this example: 

F I R S T "3 . 1 4 1 6 = 3 outputs F. 
<FIRST "3.1416) = 3 outputs TRUE. 

In the first of these ~xamples, Logo evaluates whether 3.1416 
equals 3 before it executes FIRST. 

Examples: 

Operation 

100 = 50*2 

3 = FIRST "3.1416 

[THE A AN] = [THE A] 

7. = 7 

[] 

Greater Than Sign 

number1 > number2 

Output 

TRUE 

TRUE 

FALSE 

TRUE (a decimal number is 
equivalent to the 
corresponding integer) 

FALSE (the empty word and 
the empty list are not identical) 

(infix-form operation) 

The greater than sign (> ) outputs TRUE if number1 is greater 
than number2; otherwise it outputs FALSE. 

Examples: 

Operation 

4 > 3 

-10 > -7 

Chapter 9: Arithmetic Operations 

Output 

TRUE 

FALSE 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 
(") 

I 

0 

• Conditionals and Flow of Control 
125 Flow of Control: Some General Information 
126 Using Conditionals 
126 IF 
127 IFFALSE 

I 
128 IFTRUE 
128 TEST 
129 Interrupting Procedures 

I 
130 co 
130 OUTPUT 
131 PAUSE 

I 
132 STOP 
132 WAIT 
133 Transferring Control and Repeating Instructions 

I 
133 CATCH 
135 ERROR 
136 GO 

I 
137 LABEL 
137 REPEAT 
138 RUN 

I 
140 THROW 
140 Debugging Programs 
141 STEP 
141 TRACE 
143 UN STEP 
143 UNTRACE 
144 Special Control Characters 
144 OPEN APPLE-ESC 
144 CONTROL-W 

I 
144 CONTROL-Z 

I Chapter 10: Conditionals and Flow of Control 1123 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I • 
I 

I 

I 

I 

This chapter presents the primitives and special control 
characters that you use ·to change Logo's normal way of 
executing a procedure. The primitives and special characters 
appear in five groups: 

• primitives called conditionals that tell Logo to carry out 
different instructions, depending on whether a condition is 
met 

• primitives that interrupt a procedure before it has finished 
executing 

CD 

0 

• primitives that tell Logo to repeat instructions a certain 
number of times or to jump or transfer control to some other 
instruction 

• primitives for debugging programs 

• special control characters that interrupt Logo's flow of 
control, either temporarily or permanently. 

Flow of Control: Some General Information 

Logo reads procedure definitions line by line, following the 
instructions given in each line. If a procedure contains a 
subprocedure, Logo reads the lines of the subprocedure before 
continuing in the superprocedure. Flow of control refers to 
the order in which Logo follows instructions. There are times 
when you want to alter Logo's normal flow of control. You can 
do so with any of these methods: 

Conditionals tell Logo to do one thing if such-and-such is 
true; otherwise, do something else. 

Flow of Control l1 25 



Repetition 

Halting 

Pausing 

• Using Conditionals 

tells Logo to run a list of instructions one or 
more times. 

tells Logo to stop this procedure before it 
reaches the end. 

tells Logo to interrupt this procedure while it's 
running, but let it resume afterwards. 

Conditionals allow Logo to carry out different instructions, 
depending on whether a condition is met. You use operations 
that output TRUE or FALSE, called predicates, to create this 
condition. The result of the operation is the first input to one of 
the IF primitives. The primitives for writing conditionals are 

IF 
IFFALSE 
IFTRUE 
TEST 

The three primitives TEST, IFTRUE, and IFFALSE perform 
exactly the same function as the single primitive IF. Which you 
use is a matter of convenience and personal taste. 

IF 

IF predicate list1 (command or operation) 
IF predicate list1 list2 

If predicate is TRUE, Logo runs list1. If predicate is FALSE, 
Logo runs list2 (if present) . In either case, if the selected list 
outputs something, the IF is an operation. If the list outputs 
nothing, the IF is a command. 

Examples: 

The procedure DECIDE appears in three equivalent ways. The 
first two use IF as a command-one version with two inputs to 
IF, one with three inputs. The third version of DECIDE uses IF 
(with three inputs) as an operation. 

Chapter 1 0: Conditionals and Flow of Control 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 
See section "TEST. " 

I 

I 

I 

I 

I 

I 

I 

I 

I 

IF as a command: 

TO DECIDE 
IF 0 = RANDOM 2 [OP "YESl 
OP "NO 
END 

TO DECIDE 
IF 0 =RANDOM 2 [OP "YESl [OP "NOl 
END 

IF as an operation: 

TO DECIDE 
OUTPUT IF 0 = RANDOM 2 ["YES l ["NO l 
END 

IFFALSE 

IFFALSE list (IFF) (command) 

IFFALSE runs list if the result of the most recent TEST was 
FALSE, otherwise it does nothing. Note that if TEST has not 
been run in the same procedure or a superprocedure, or from 
top level , IFFALSE does nothing. 

Example: 

TO QUIZ 
PRINT [WHAT IS THE CAPITAL OF NEW JE! 
RSEY?J 
TEST "TRENTON = UPPERCASE READWORD 
IFTRUE [PRINT "CORRECT!] 
IFFALSE [PRINT "WRONGl 
END 

?QUIZ 
WHAT IS THE CAPITAL OF NEW JERSEY? 
NEWARK 
WRONG 

Using Conditionals 



See section "TEST." 

I 
IFTRUE 

IFTRUE list (1FT) (command) I 

IFTRUE runs list if the result of the most recent TEST was I 
TRUE, otherwise it does nothing. Note that if TEST has not 
been run in the same procedure or a superprocedure, or from I 
top level , IFTRUE does nothing. 

Example: 

TO QUIZ2 
PR [WHO IS THE GREATEST?] 
TEST "ME = UPPERCASE READWORD 
IFTRUE [PR [RIGHT ONl STOPl 
PR [NO, TRY AGAINl 
QUIZ2 
END 

?QUIZ2 
WHO IS THE GREATEST? 
GEORGE 
NO, TRY AGAIN 
WHO IS THE GREATEST? 
ME 
RIGHT ON 

TEST 

TEST predicate 

I 

I 

I 

I 

I 

I 
(command) I 

TEST remembers whether predicate is TRUE or FALSE for 
subsequent use by IFTRUE or IFFALSE. Each TEST is local to I 
the procedure in which it occurs. 

I 

I 

I 

I 

Chapter 10: Conditionals and Flow of Control I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Example: 

TO SHORTQUIZ 
PR [HOW ARE YOU?l 
TEST "FINE = UPPERCASE READWORD 
IFTRUE [PR [I'M GLAD TO HEAR ITll 
END 

?SHORTQUIZ 
HOW ARE YOU? 
LOUSY 

?SHORTQUIZ 
HOW ARE YOU? 
FINE 
I'M GLAD TO HEAR IT 

• Interrupting Procedures 

READCHAR , READCHARS, 
READLIST, and READWORD are 
described in Chapter 13. 

The commands for stopping a procedure, either temporarily or 
permanently, are 

co 
OUTPUT 
PAUSE 
STOP 
WAIT 

To halt a procedure before it reaches an END statement, use 
the STOP and OUTPUT commands. Logo then transfers control 
back to the calling procedure (the procedure using it) or to top 
level. OUTPUT can communicate information to the calling 

sree~8~r~: ~8!~ !h~t me~e e8mm~n8~ {§T9P gn8 9~Tr~T} 
halt only the procedure they appear in. 

To interrupt a procedure without permanently stopping it, use 
the PAUSE and WAIT commands. PAUSE applies mainly to 
debugging. You can use WAIT for time-critical code like 
animated graphics. 

Note: Other primitives such as READCHAR, READCHARS, 
READLIST, and READWORD also temporarily interrupt 
procedures. 

Interrupting Procedures 



co 
co (command) 

The CO (for continue) command resumes running of a 
procedure after a PAUSE or (CONTROL )-(1), continuing from 
wherever the procedure paused . 

OUTPUT 

OUTPUT object (OP) (command) 

The OUTPUT command is meaningful only when it is within a 
procedure, not at top level. It makes object the output of your 
procedure and returns control to the caller. Note that although 
OUTPUT is itself a command , the procedure containing it is an 
operation because it has an output. Compare with STOP. 

Examples: 

TO MARK.TWAIN 
OUTPUT [SAMUEL CLEMENS] 
END 

?PR SE MARK.TWAIN [IS A GREAT AUTHOR] 
SAMUEL CLEMENS IS A GREAT AUTHOR 

WHICH outputs the position of an element in a list: 

TO WHICH :MEMBER :LIST 
IF NOT MEMBERP :MEMBER :LIST [OUTPUT OJ 
IF :MEMBER = FIRST :LIST [OUTPUT 1] 
OUTPUT 1 + WHICH :MEMBER BF :LIST 
END 

?MAKE "VOWELS [A E I 0 U J > 
?PR WHICH "E :VOWELS 
2 
?PR WHICH "U :VOWELS 
5 
?PR WHICH "W :VOWELS 
0 

Chapter 1 0: Conditionals and Flow of Control 

I 

I 

I 

I 

I 

I 

I 

I 

I 

·I 

I 

I 

I 

I 

I 

I 

I 



I 

An alternate version of the 
absolute value operation appears 
in the discussion of the minus sign 
(-) operation in Chapter 9. 

Here is one definit ion of the absolute-value operation: 

TO ABS :N 
IF : N < 0 [OUTPUT - : N J [OUTPUT : N l 
END 

PAUSE 

PAUSE (command or operation) 

The PAUSE command is meaningful only when it is within a 
procedure, not at top level. It suspends running of the 
procedure and tells you that you are pausing; you can then type 
instructions interactively. To indicate that you are in a pause 
and not at top level , the prompt character changes to the name 
of the procedure you were in , followed by a question mark. 
During a pause, (QJ-( ESC ) does not work; the only way to return 
to top level during a pause is to run THROW "TOPLEVEL. 

All local variables are accessible during a pause. See PR :MAX 
in the following example. 

The procedure may be resumed by typing CO . 

Examples: 

TO WALK :MAX 
RT RANDOM 360 
FD RANDOM :MAX 
PR POS 
PAUSE 
WALK :MAX 
END 

?WA L K 100 
60 . 4109 -13.947 
PAUSING •.• 
WAL K?PR HEADING 
10 3 
WALK?PR :MAX 
100 
WA L K?CO 
68.438 1 2.1059 

Interrupting Procedures 



STOP 
STOP (command) 

The STOP command stops the procedure that is running and 
returns control to the caller. This command is meaningful only 
when it is within a procedure-not at top level. Note that a 
procedure containing STOP is a command. Compare STOP with 
OUTPUT. 

Examples: 

fD COUNTDoWN :NUM 
PR :NUM 
IF :NUM = 0 [PR [BLAST OFF!J STOPJ 
COUNTDOWN :NUM - 1 
END 

?COUNTDOWN 4 
4 
3 
2 
1 
0 
BLAST OFF! 

WAIT 

WAIT integer (command) 

WAIT tells Logo to wait for integer 60ths of a second. 

Example: 

The procedure REPORT keeps printing the turtle 's position as it 
moves randomly. It uses WAIT to give you time to read the 
position . 

TO REPORT 
RT 10 * RANDOM 36 
FD 10 * RANDOM 10 
PR POS 
WAIT 100 
REPORT 
END 

Chapter 1 0: Conditionals and Flow of Control 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• 
I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

• 
I 

I 

I 

?CS HT 
?REPORT 
0. 90. 
-46.9846 72.889 
-41.7752 43.3547 

• Transferring Control and Repeating Instructions 

See this chapter 's section "RUN " 
for examples of some complex 
repetitive procedures. 

This section describes the primitives you use to repeat 
instructions and to tranl)fer control to some other instruction. 
The primitives in this section are 

CATCH 
ERROR 
GO 
LABEL 
REPEAT 
RUN 
THROW 

Two pairs of primitives tell Logo to jump or transfer control to 
some other instruction. To transfer control to an instruction in 
the same procedure, use GO and LABEL. To transfer control to 
another procedure, use CATCH and THROW. You can use 
CATCH and THROW to stop an entire program. 

Re petition can be done by using REPEAT or a recursive 
procedure. There are many examples of such procedures 
throughout this manual. 

CATCH 

CATCH name list (command) 

CATCH runs list. If a THROW name command is called while 
list is run, control returns to the first statement after the 
CATCH. The name is used to match up a THROW with a 
CATCH . For instance, CATCH "CHAIR [whatever] catches a 
THROW "CHAIR but not a THROW "TABLE. 

Transferring Control and Repeating Instructions 



There is one special case. CATCH "ERROR catches an error 
that would otherwise print an error message and return to top 
level. If an error is caught, the message that Logo would 
normally print isn't printed. See the explanation of ERROR in 
this chapter to find out how to tell what the error was. 

Examples: 

The procedure SNAKE reads numbers typed in by you, and 
uses them as distances to move the turtle. It turns the turtle 
between moves. If you type something other than a number, the 
program (using its READNUM subprocedure) prints an 
appropriate message and continues working . 

TO SNAKE (superprocedure) 
CATCH "NOTNUM {SLITHER] 
SNAKE 
END 

TO SLITHER 
PR [TYPE A 
FD READNUM 
RT 10 
END 

TO READNUM 

(subprocedure) 
NUMBER, PLEASE. J 

(subprocedure) 

I 

I 

I 

I 

I 

I 

I 

I 

LOCAL "LINE • 
Mi"ii<( C::: "" L I N t: tH: ADL I 
IF NOT NUMBERP FIRST :LINE [PR [THAT'S 
NOT A NUMBER.] THROW "NOTNUMJ a 
IF NOT EMPTYP BF :LINE [ PR [ONLY ONE NU! 
MBER, PLEASE!] THROW "NOTNUMJ 
OUTPUT FIRST :LINE I · 
END 

Notice that STOP in place of THROW "NOTNUM would have I 
returned to SLITHER, not to SNAKE. 

I 

I 

I 

Chapter 10: Conditionals and Flow of Control I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Appendix A has a complete list of 
error numbers and their meanings. 

The procedure DOlT runs instructions typed in by you. When an 
error occurs , Logo does not display the standard error message 
and does not return to top level; instead , it displays THAT 
STATEMENT IS INCORRECT and lets you continue typing 
instructions. 

TO DOlT 
CATCH "ERROR [DOIT11 
PR [THAT STATEMENT IS INCORRECT] 
DOlT 
END 

TO DOIT1 
RUN READLIST 
DOIT1 
END 

?DOlT 
PR 3 + 5 
8 
PR12 - 7 
THAT STATEMENT IS INCORRECT 
PR 12 - 7 
5 
THROW "TOPLEVEL 

ERROR 

ERROR (operation) 

ERROR outputs a four-element list containing information about 
the most recent error that has not had a message printed or 
output by ERROR. If there was no such error, ERROR outputs 
the empty list. The elements in the list are 

• a unique number identifying the error 

• a message explaining the error 

• the name of the primitive causing the error, if any 

• the name of the procedure within which the error occurred 
(the empty list, if top level) . 

Transferring Control and Repeating Instructions 



Logo runs THROW "ERROR whenever an error occurs during 
the execution of a procedure. Control passes to top level unless 
a CATCH "ERROR has been run. When an error is caught in 
this way, no error message is printed, and you can design your 
own. 

Example: 

TO SAFESQUARE :SIDE 
CATCH "ERROR [REPEAT 4 [FD :SIDE RT 901! 
STOPJ 
PR ERROR 
END 

?SAFESQUARE "SIXINCHES 
41 [FORWARD DOtSN'T LIKE SIXINCHES AS I! 
NPUTJ FD SAFESQUARE 
SAFESQUARE runs CATCH "ERROR and prints ERROR if an 
error occurs. You can modify the procedure to print your own 
error message. 

TO SAFESQUARE :SIDE 
CATCH "ERROR [REPEAT 4 [FD :SIDE RT 901! 
STOPJ 
PR [OOPS, A BUG!l 
END 

?SAFESQUARE "SIX 
OOPS, A BUG! 

GO 

GO word (command) 

The GO command transfers control to the instruction following 
LABEL word in the same procedure. 

Chapter 1 0: Conditionals and Flow of Control 

• 
I 

• 
• 
I 

I 

I 

I 

I 

• 
I 

• 
• 
I 



I 

I 

I 

I 

I 

I See section "GO." 

• 
I 

I 

I 

I 

I 

I 

I 

• 
I 

• 

Example: 

TO COUNTDOWN :N 
LABEL "LOOP 
IF :N < 0 [STOPl 
PRINT :N 
MAKE "N :N- 1 
GO "LOOP 
END 

LABEL 

LABEL word (command) 

The LABEL command itself does nothing. However, a GO word 
passes control to the instruction following it. Note that word 
must always be a literal word (that is, it must be preceded by a 
quotation mark). 

REPEAT 

REPEAT integer list (command) 

REPEAT runs list integer times. An error occurs if integer is 
negative. 

Examples: 

REPEAT 4 [ FD 1 0 0 RT 90 l draws a square 100 turtle 
steps on a side. 
REPEAT 3 [FD 100 RT 901 drawsthreequartersofa 
square. 

I dll!::>lerrrny vUfllfUI dIU eJJedliiiY lfl!::> IUl.liUII!::> 



RUN 

RUN list (command or operation) 

The RUN command runs list as if typed in directly . If list is an 
operation , then RUN outputs whatever list outputs . 

Examples: 

TO CALCULATOR 
PR RUN READLIST 
PR [J 

CALCULATOR 
END 

?CALCULATOR 
2 + 3 
5 

17.5 * 3 
52.5 

42 = 8 * 7 
FALSE 

REMAINDER 12 5 
2 

The WHILE procedure runs a list of instructions while a 
specified condition is true : 
specified condition is true : 

TO WHILE :CONDITION :LIST 
TEST RUN :CONDITION 
IFFALSE [STOPJ 
RUN :LIST 
WHILE :CONDITION :LIST 
END 

?RT 10 
?WHILE [XCOR < 1001 [FD 25 PR POSJ 

The following procedure applies a command to each element of 
a list in turn : 

TO MAP :CMD :LIST 
IF EMPTYP :LIST [STOPJ 
RUN LIST : CMD WORD 1111 FIRST :LIST 
MAP :CMD BF :LIST 
END 

Chapter 1 0: Conditionals and Flow of Control 

• 
I 

I 

I 

• 
• 
I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

TO SQUARE :SIDE 
REPEAT 4 [FD :SIDE RT 901 
EI'ID 
?MAP "SQUARE [10 20 40 801 

?MAKE "I'IEW.EI'IGLAI'ID [ME I'IH VT MA RI CTl 
?MAP "PRII'IT :I'IEW.EI'IGLAI'ID 
ME 
I'IH 
VT 
MA 
RI 
CT 

The following procedure, FOREVER, repeats its input forever 
(unless it hits an error or is stopped with @]-( ESC )): 

TO FOREVER :LIST 
RUI'I :LIST 
FOREVER :LIST 
EI'ID 

The command FOREVER [ FD 1 RT 1 l tells the turtle to 
draw a circle . 

The command FOREVER [ PR RUI'I READL I ST PR [ l l is 
equivalent to the CALCULATOR procedure defined above. 

The procedure SAFE.SQUARE draws a square and then 
restores the pen type to whatever it was previously: 

TO SAFE.SQUARE 
MAKE "SAVETYPE PEl'! 
PEI'IDOWI'I 

Transferring Control and Repeating Instructions 



See section "CATCH ." 

SQUARE 1 0 0 
RUN <SE :SAVETYPE> 
END 

TO SQUARE :LEN 
REPEAT 4 [FD :LEN RT 901 
END 

?SHOW PEN 
PEN UP 
?SAFE.SQUARE 
?SHOW PEN 
PEN UP 

RUN READL I ST runs any commands you type in. 
PRINT RUN READ !,. I ST prints the output from any 

expression you typed in. 

THROW 

THROW name (command) 

The THROW command is meaningful only within the range of 
the CATCH command. An error occurs if no corresponding 
CATCH name is found. 

THROW "TOPLEVEL returns control to top level. Contrast with 
STOP . 

• Debugging Programs 

You use the primitives in this section to analyze and debug 
programs. The primitives are 

STEP 
TRACE 
UN STEP 
UNTRACE 

Chapter 10: Conditionals and Flow of Control 

I 

I 

I 

• 
• 
• 
II 

I 

I 

I 

I 

I 

• 
I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• 
I 

I 

STEP 

STEP name(list) (command) 

The STEP command takes the procedure indicated by name(lisf) 
as input and lets you run them line by line. STEP pauses at 
each line of execution and continues only when you press any 
key on the keyboard . 

Examples: 

TO TRIANGLE :WORD 
IF EMPTYP :WORD [STOPl 
PR :WORD 
TRIANGLE BL :WORD 
END 

?STEP "TRIANGLE 
?TRIANGLE "IT 
IF EMPTYP :WORD 
[STOPl 

PR :WORD 
IT 
TRIANGLE BL :WORD 
IF EMPTYP :WORD 
[STOPl 

PR :WORD 
I 
TRIANGLE BL :WORD 
IF EMPTYP :WORD 
[STOPl 
? 

TRACE 

TRACE name(lisf) 

You press any key. 

You press any key. 

You press any key. 
You press any key. 

You press any key. 

You press any key. 
You press any key. 

(command) 

The TRACE command takes the procedures indicated by 
name(lisf) as input and causes them to print tracing information 
when executed. It does not interrupt the execution of the 
procedure, but allows you to see the depth of the procedure 

Debugging Programs 



stack during execution. TRACE is useful in understanding 
recursive procedures or complex programs with many 
subprocedures. 

Examples: 

?POPS 
TO COUNTUP :N 
IF :N = 10 CSTOPl 
COUNTUP :N + 1 
PR :N 
END 
?TRACE "COUNTUP 
?COUNTUP 5 

9 

8 

7 

6 

COUNTUP 5 
COUNTUP 6 

COUNTUP 7 
COUNTUP 8 

COUNTUP 9 
COUNTUP 10 
COUNTUP stopped 

COUNTUP stopped 

COUNTUP stopped 

COUNTUP stopped 

COUNTUP stopped 
5 

COUNTUP stopped 
? 

Chapter 1 0: Conditionals and Flow of Control 

• 
I 

I 

• 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

UNSTEP 

UNSTEP name(list) (command) 

UNSTEP restores the procedure(s) indicated by name(list) back 
to their original states. After you step through a procedure (with 
STEP), you must use UNSTEP so that it will execute normally 
again. 

Examples: 

?UNSTEP "TRIANGLE 
?TRIANGLE "IT 
IT 
I 
? 

UNTRACE 

UNTRACE name(list) (command) 

UNTRACE stops the tracing of procedure name and causes it 
to execute normally again. 

Examples: 

?UNTRACE "COUNTUP 
?COUNTUP 5 

? 

9 
8 
7 
6 
5 

Debugging Programs 



• Special Control Characters 

The special characters in this section interrupt Logo's flow of 
control , either temporarily or permanently. 

OPEN APPLE-ESC 

@]-( ESC ) (special character) 

Pressing @]-( ESC ) immediately stops whatever is running, 
returning Logo to top level , unless in a pause mode. 

CONTROL·W 

( CONTROL )-@ (special character) 

Pressing (coNTROL )-@ interrupts whatever is running. Typing 
any character resumes normal execution. This special character 
is particularly useful in giving yourself time to read when Logo 
is displaying more than one screenful of information. 

CONTROL·Z 

( CONTROL }-(I) (special character) 

I 

I 

I 

I 

• 
I 

I 

I 

• Pressing (CONTROL )-(I) interrupts whatever is running, causing a 
pause. ~ is equivalent in effect to PAUSE, but I 
different in its use: you press (CONTROL )-(I) at the keyboard 
during the running of a procedure, while PAUSE is part of the 
definition of a procedure. I 

• 
I 

I 

• 
Chapter 1 0: Conditionals and Flow of Control I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• Modifying Procedures Under Program 
Control 
148 COPYDEF 
148 DEFINE 
150 DEFINEDP 
150 PRIMITIVEP 
151 TEXT 

Chapter 11: Modifying Procedures 

...... 



I 

• 



I 

I 

An explanation of RUN appears in 
Chapter 10. 

This chapter explains the feature of Logo that allows you to 
write procedures that define and modify other procedures. The 
primitives for this feature are 

COPYDEF 
DEFINE 
DEFINEDP 
PRIMITIVEP 
TEXT 

You use the DEFINE and TEXT primitives to define and modify 
procedures within other procedures. DEFINE changes a list of 
instructions into a procedure. TEXT works the other way 
around, changing a procedure into a list. The list can be 
modified , using the list manipulation techniques described in 
Chapter 7. 

You can use the same list manipulation techn iques to create a 
completely new list. DEFINE then stores it as a procedure in 
your workspace. Note that if you want to execute this list but 
don 't want to keep it in your workspace, you should use RUN 
instead of DEFINE. 

PRIMITIVEP and DEFINEDP tell you if a procedure name 
already exists. They can be useful in writing debugging 
programs and in avoiding certain error conditions. 

COPYDEF creates a copy of a procedure under a new name. 
You might want to use COPYDEF to create a backup copy of a 
procedure, because DEFINE can accidentally destroy an 
existing procedure. 

Chapter 11 : Modifying Procedures 



• COPYDEF 

• DEFINE 

COPYDEF name newname (command) 

COPYDEF copies the definition of name, making it the definition 
of newname as well. 

Examples: 

COPYDEF "SQUARE "NEWSQUARE gives NEWSQUARE the 
same definition as SQUARE. 

COPYDEF "FORWARD "F gives F the same definition 
as FORWARD . 

DEFINE name list (command) 

DEFINE makes list the definition of the procedure name. The 
first element of list is a list of the inputs to name, with no 
colon (:) before the names. 

If name has no inputs, this must be the empty list. Each 
subsequent element is a list consisting of one line of the 
procedure definition. (This list does not contain END, because 
END is not part of the procedure definition.) 

The second input to DEFINE has the same form as the output 
from TEXT. DEFINE can redefine an existing procedure. 

Examples: 

DEFINE "SQUARE [[SIDEJ [REPEAT 4 [FD :S! 
IDE RT 90JJJ 

defines the same procedure as 

TO SQUARE :SIDE 
REPEAT 4 [FD :SIDE RT 901 
END 

LEARN is a program that lets you type successive lines defining 
a procedure that has no inputs. Each time you press (RETURN), 

Logo runs the instruction as well as making it part of the 
procedure definition. By typing ERASE , you can erase the 
previous line. 

Chapter 11: Modifying Procedures 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

TO LEARN 
MAKE "PRO [[)] 
READLIHES 
PR [DO YOU WAHT TO SAVE THIS AS THE DEF! 
IHITIOH OF A PROCEDURE?] 
TESH FIRST FIRST READLI ST> = "Y 
1FT [TYPE [PROCEDURE HAME?J DEFINE FIRS! 
T READLIST :PROl 
EHD 

TO READLIHES 
MAKE "HEXTLIHE READLIST 
IF :HEXTLIHE = [EHDl [STOPl 
TEST :HEXTLIHE = [ERASEl 
IFTRUE [CAHCELl 
I FFALSE [ RUH : HEXTLI HE MAKE "PRO LPUT :! 
HEXTLI HE :PRO l 
READLIHES 
EHD 

TO CANCEL 
PR SE [I WILL ERASE LIHEl LAST :PRO 
MAKE "PRO BL :PRO 
EHD 

?LEARN 
FD 20 
RT 36 
ERASE 
I WILL ERASE LIHE RT 36 
RT 72 
EHD 
DO YOU WAHT TO SAVE THIS AS THE DEFIHIT! 
IOH OF A PROCEDURE? 
YES 
PROCEDURE HAME?LEG 

DEFINE 



• DEFINEDP 

• PRIMITIVEP 

?PO "LEG 
TO LEG 
FD 20 
RT 72 
END 

DEFINEDP word 

I 

I 
(operation) I 

DEFINEP outputs TRUE if word is the name of a user-defined I 
procedure, FALSE otherwise . 

PRIMITIVEP name (operation) 

PRIMITIVEP outputs TRUE if name is the name of a primitive, 
FALSE otherwise. 

Examples: 

Operation 

PRIMITIVEP "FORWARD 

PRIMITIVEP "SQUARE 

Output 

TRUE 

FALSE 

Chapter 11: Modifying Procedures 

I 



• TEXT 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

TEXT name (operation) 

The TEXT primitive outputs the definition of name as a list of 
lists, suitable for input to DEFINE. 

Example: 

?SHOW TEXT "POLY 
[[SIDE ANGLE] [FD :SIDE RT :ANGLEl [POL! 
Y :SIDE :ANGLEll 

The first element of the output is a list of the names of the 
procedure's inputs. The- rest of the elements are lists; each one 
is a line in the procedure definition. (If the procedure name is 
undefined, TEXT outputs the empty list.) The previous example 
corresponds to: 

?PO "POLY 
TO POLY :SIDE :ANGLE 
FD :SIDE RT :ANGLE 
POLY :SIDE :ANGLE 
END 

You can use TEXT in conjunction with DEFINE to create 
procedures that modify other procedures. Here is a simple 
example: 

?PO "SQUARE 
TO SQUARE 
REPEAT 4 [FD 30 RT 901 
END 
?DEFINE "SQUARE.WITH.TAIL LPUT [FD 1001! 

TEXT "SQUARE 

?PO "SQUARE.WITH.TAIL 
TO SQUARE.WITH.TAIL 
REPEAT 4 [FD 30 RT 901 
FD 100 
END 

TEXT 



I 
Complex Example: 

The primitive STEP is described in The procedure $STEP in this example modifies the definition of I 
Chapter 10. a procedure to make it run one line at a time. The procedure 

$STEP is similar to the primitive STEP. The example is included 
to show you how to modify a procedure definition. 1 
After each line is run, Logo waits for you to press (RETURN) 

before it proceeds. $UNSTEP restores the original procedure .

1 definition. 

The Program: 

TO $STEP :PRO II 
COPYDEF :PRO WORD II :PRO 
MAKE "OLDDEF TEXT :PRO 
MAKE "NEWDEF CtiST FIRST :OLDDEF> I 
MAKE "NEWDEF LPUT <LIST "PRINT <LIST "E! 
NTERING :PRO>> :NEWDEF 
SHOWINPUTS FIRST :OLDDEF II 
SHOWLINES BF :OLDDEF 
DEFINE :PRO :NEWDEF 
END II 
TO IGNORE :INPUTT 
END 

TO STEPPER 
TYPE II 

IGNORE READLI ST 
END 

Chapter 11: Modifying Procedures 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

TO SHOWLINES :INSTRUCTIONS 
IF EMPTYP :INSTRUCTIONS [STOPl 
MAKE "NEWDEF LPUT CLIST "TYPE FIRST :IN! 
STRUCTIONS> :NEWDEF 
MAKE "NEWDEF LPUT [STEPPER l : NEWDEF 
MAKE "NEWDEF LPUT FIRST :INSTRUCTIONS :! 
NEWDEF 
SHOWLINES BF :INSTRUCTIONS 
END 

TO SHOWINPUTS :ARGLIST 
IF EMPTYP :ARGLIST [STOPl 
MAKE "NEWDEF LPUT (LIST "PRINT "SENTENC! 
E CLIST CFIRST :ARGLIST> "IS> CWORD ":! 
Fl RST : ARGLI ST» . : NEWDEF 
SHOWINPUTS BF :ARGLIST 
END 

TO $UNSTEP :PRO 
COPYDEF WORD ". :PRO :PRO 
ERASE WORD II. :PRO 
END 

TEXT 



Using the Program: 

TO TRIANGLE :WORD 
IF EMPTYP :WORD CSTOPl 
PR :WORD 
TRIANGLE BL :WORD 
END 

?$STEP "TRIANGLE 
?TRIANGLE "IT 
ENTERING TRIANGLE 
WORD IS IT 
IF EMPTYP :WORD [STOP l 

PR :WORD 
IT 
TRIANGLE BL :WORD 
ENTERING TRIANGLE 
WORD IS I 
IF EMPTYP :WORD CSTOPl 

PR :WORD 
I 
TRIANGLE BL :WORD 
ENTERING TRIANGLE 
WORD IS 
IF EMPTYP :WORD CSTOPl 
? 

Chapter 11: Modifying Procedures 

You press ( RETURN ) 

You press (RETURN) 

You press ( RETURN ) 

You press ( RETURN ) 

You press ( RETURN ) 

You press (RETURN) 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 
(') 

::T 

SlJ 

I 
'U 

CD 

...... 

I 
1\J 

I 

I 

I • Logical Operations 
158 AND 
159 NOT 

I 160 OR 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I Chapter 12: Logical Operations 1155 



I 

I 

I 

I 

• 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• 
I 

I 

Predicates are operations that 
output only TRUE or FALSE. Most 
of their names end in P. 

This chapter describes the logical operations AND, NOT, and 
OR. A logical operation is a predicate whose input must be 
either TRUE or FALSE. 

The inputs to logical operations are usually other predicates. 
Predicates are found throughout the other chapters of this 
manual: 

Predicate Chapter 

BEFOREP 7 
BUTTONP 13 
DEFINEDP 11 
DOTP 5 
EMPTYP 7 
EQUALP 7 
FILEP 15 
KEYP 13 
LISTP 7 

MEM§E~~ 1 
NAMEP 8 
NUMBERP 7 
PRIMITIVEP 11 
SHOWNP 5 
WORDP 7 
< 9 

9 
> 9 

Chapter 12: Logical Operations 

() 



. AND 

AND predicate 1 predicate2 (operation) 
(AND predicate1 predicate2 predicate3 ... ) 

AND outputs TRUE if all its inputs are true, FALSE otherwise. 

Examples: 

Operation 

AND"TRUE"TRUE 

AND "TRUE "FALSE 

AND "FALSE "FALSE 

(AND "TRUE "TRUE "FALSE 
"TRUE) 

AND 57 

AND PENCOLOR=1 
BACKGROUND=O 
(when you start up Logo) 

Output 

TRUE 

FALSE 

FALSE 

FALSE 

Error 

FALSE 

The following procedure, DECIMALP, tells whether its input is a 
decimal number: 

TO DECIMALP :OBJ 
OUTPUT AND NUMBERP :OBJ MEMBERP " :OBJ 
END 

?PR DECIMALP 17 
FALSE 
?PR DECIMALP 17. 
TRUE 
?PR DECIMALP "STOP. 
FALSE 

The following procedure tells you whether the temperature is 
comfortable (between 50 and 90 degrees F): 

TO COMFORT 
IF AND :TEMPERATURE > 50 :TEMPERATURE <! 
90 [ PR "DELIGHTFUL l [ PR "UNPLEASANT l 

END 

Chapter 12: Logical Operations 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



. NOT 

I 

I 

I 

I 

I 

I 

I 

?MAKE "TEMPERATURE 68 
?COMFORT 
DELIGHTFUL 

NOT predicate (operation) 

NOT outputs TRUE if predicate is FALSE; if predicate is TRUE, 
NOT outputs FALSE. 

Examples: 

Operation 

NOT EQUALP "A "B 

NOT EQUALP "A "A 

NOT "A = FIRST "DOG 

NOT "A 

Output 

TRUE 

FALSE 

TRUE 

Error 

If WORDP were not a primitive, it could be defined as follows: 

TO WORDP :OBJ 
OUTPUT NOT LISTP :OBJ 
END 

The following procedure tells whether its input is a word that 
isn 't a number: 

TO REALWORDP :OBJ 
OUTPUT AND WORDP :OBJ NOT NUMBERP :OBJ 
END 

?PR REALWORDP HEADING 
FALSE 
?PR REALWORDP POS 
FALSE 
?PR REALWORDP "KANGAROO 
TRUE 
?PR REALWORDP PEN 
TRUE 

NOT 



OR predicate! predicate2 (operation) 
(OR predicate! predicate2 predicate3 .. . ) 

OR outputs FALSE if all its inputs are false; otherwise it outputs 
TRUE. 

Examples: 

Operation 

OR "TRUE ''TRUE 

OR ''TRUE "FALSE • 

OR "FALSE "FALSE 

(OR "FALSE "FALSE "FALSE 
''TRUE) 

OR 57 

Output 

TRUE 

TRUE 

FALSE 

TRUE 

Error 

The procedure MOUNTAINS draws mountains: 

TO MOUNTAINS 
SETPC 5 
RT 45 
FD 5 
SUBMOUNTAIN 
END 

TO SUBMOUNTAIN 
FD 5 + RANDOM 10 
IF DR YCDR > 50 YCOR < 0 [SETHEADING 1! 
80-HEADINGl 
SUBMOUNTAIN 
END 

Chapter 12: Logical Operations 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I I () 

::::r 
Q) 

I "0 

(1) 

I 
(J.) 

I 

I 

I • The Outside World 
163 Using Paddles 

I 163 BUTTONP 
164 PADDLE 
164 Making Logo Read Information 

I 164 KEYP 
165 READCHAR 
166 READCHARS 

I 167 READ LIST 
167 READWORD 
168 Making Logo Write Information 

I 169 PRINT 
170 SHOW 
170 TYPE 

I 171 Making Sounds With TOOT 

I 

I 

I 

I 

I 

I Chapter 13: The Outside World 1161 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I • Using Paddles 

I 

-
I 

I 

This chapter describes primitives for communicating with 
various devices through the computer. The devices include the 
keyboard, the television set, and the game paddles. The 

~rimiti¥@§ am 9ivi9g9 int9 fgyr ~r9!:l~§: 
• primitives for using paddles 

• primitives for making Logo read information 

• primitives for making Logo write information 

• a primitive for making sounds. 

This section describes the BUTTONP and PADDLE primitives, 
which communicate information from the paddle, or hand 
control. 

BUTTONP 

BUTTONP paddlenumber (operation) 

BUTTONP outputs TRUE if the button on the specified paddle 
is down and FALSE if the button is up. The paddlenumber must 
be 0, 1, 2 OR 3. CQJ is button 0 and (!) is button 1. 

Using Paddles 



I 
PADDLE 

PADDLE paddlenumber (operation) I 

PADDLE outputs a number between 0 and 255, representing I 
the rotation of the dial on the specifi!:!d paddle. 

Example: I 
TO PDRAW 
RIGHT <PADDL E O> I 25.6 
FORWARD <PADDLE 1> I 25.6 
PDRAW 
END 

I 

I 
• Making Logo Read Information 

I 

READCHAR , READCHARS, 
READLIST, and READWORD are 
also used in connection with the 
file-handling system described in 
Chapters 15 and 16. 

This section presents the primitives that you use to make Logo 
read information from a device or a file . Normally, this device is 
the keyboard. The primitives are 

KEYP 
READCHAR 
READCHARS 
READLIST 
READWORD 

The operations READCHAR, READCHARS, READLIST, and 
READWORD let Logo read text that has been typed into the 
keyboard. KEYP is a keyboard predicate mainly useful in game 
situations. 

KEYP 

KEYP (operation) 

I 

I 

I 

I 

KEYP outputs TRUE if there is at least one character waiting to 
be read-that is, one that has been typed on the keyboard and I 
not yet picked up by READCHAR or READLIST. KEYP outputs 
FALSE if there are no such characters. 

I 

I 

Chapter 13: The Outside World I 



I 

I 

I 

I 

I 

I 

I 

I 

I See also section "KEYP. " 

I 

I 

I 

I 

I 

I 

I 

I 

Example: 

TO STEER 
FD 2 
IF KEYP [TURN READCHAR1 
STEER 
END 

TO TURN :DIR 
IF :DIR "R [RT 101 
IF :DIR = "L [LT 101 
END 

READCHAR 

READCHAR (RC) (operation) 

READCHAR outputs the first character typed at the keyboard or 
read from the current file. If you are reading from the keyboard 
and no character is waiting to be read , READCHAR waits until 
you type something . 

READCHAR does not output a character if you are reading from 
a file and the end-of-file position is reached. In this case, 
READCHAR outputs an empty list. Note that READCHAR from 
the keyboard does not echo what you type on the screen . 

If you are reading from the keyboard , you can set the high bit 
of the character being read by holding down either Apple key as 
you type the character. Setting the high bit adds 128 to the 
character. 

The following procedure, XYZZY, lets you run certain 
commands with a single keystroke: 0 does FORWARD 5, and 
® does RIGHT 10. (You can add to the list.) You need not 
press (RETURN) after the keystroke. 

TO XYZZY 
INTERPRET READCHAR 
XYZZY 
END 

TO INTERPRET :CHAR 
IF :CHAR "F [FD 51 
IF :CHAR "R [RT 101 
IF :CHAR "S [THROW "TOPLEVEL 1 
END 

Making Logo Read Information 



READCHARS 

READCHARS integer (RCS) (operation) 

The READCHARS operation outputs the first integer number of 
characters typed at the keyboard or read from the current file. If 
you are reading from the keyboard and no characters are 
waiting to be read , READCHARS waits for you to type 
something. 

If you are reading from a file and the end-of-file position is 
reached before integer characters are read , READCHARS 
outputs the characters read up to that point. If the end-of-file 
position was reached before READCHARS was called , 
READCHARS outputs an empty list. 

Note that READCHARS from the keyboard does not echo what 
you type on the screen . 

Remember that a carriage return is read as a character. 

I 

I 

I 

I 

I 

I 

If you are reading from the keyboard , you can set the high bit I 
of the character being read by holding down either Apple key as 
you type the character. Setting the high bit adds 128 to the 
character. I 
Example: 

?PRINT READCHARS 4 

Type the following letters: 

ABC 

Nothing happens. Now type 

D 

(Don 't press ( RETURN ).) 

The following appears on the screen: 

ABCD 

Chapter 13: The Outside World 

I 

I 

I 

I 

I 

I~ 



I 

· I 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

READLIST 

READ LIST (RL) (operation) 

The READLIST operation reads a line of information from the 
current file and outputs the information in the form of a list. 
Normally, the source is the keyboard , where you type in 
information followed by a carriage return. This information is 
echoed on the screen. The command SETREAD allows you to 
read from other files . 

If you are reading from a file where the end-of-file position has 
already been reached, READLIST outputs the empty word . 

Examples: 

?PRINT COUNT READLIST 
I HOPE THIS REALLY WORKS 
5 

TO GET.USER 
PRINT [WHAT IS YOUR NAME?] 
MAKE 11 USER READLIST 
PRINT SE [WELCOME TO LOGO, l :USER 
END 

?GET.USER 
WHAT IS YOUR NAME? 
EFFIE 
WELCOME TO LOGO, EFFIE 
?GET.USER 
WHAT IS YOUR NAME ? 
EFFIE MANIATIS 
WELCOME TO LOGO, EFFIE MANIATIS 

READ WORD 

READWORD (RW) (operation) 

READWORD reads a line of information from the current file 
and outputs it as a word. Normally, the source is the keyboard, 
and READWORD waits for you to type and press (RETURN). 

What you type is echoed on the screen. If you press (RETURN) 

before typing a word , READWORD outputs an empty word. 

Making Logo Read Information 



See sections "READLIST, 
READCHAR , READCHARS," and 
"SETREAD." 

If you use READWORD from a file, READWORD reads 
characters until it reaches a carriage return, and outputs those 
characters as a word. The next character to be read is the one 
after the carriage return. When the end-of-file position is 
reached , READWORD outputs an empty list. 

Examples: 

?SHOW READWORD 
LOHDOH OHTARIO 
LOHDOH OHTARIO 

?PRIHT COUHT READWORD 
THERE IS SOME VALUE IH COUHTIHG WORDS 
37 

The following procedure asks your age and then prints how old 
you will be next year. 

TO AGE 
PRIHT [HOW OLD ARE YOU?l 
PRIHT MESSAGE READWORD 
EHD 

TO MESSAGE :AGE 
OP SE [HEXT YEAR YOU WILL BEl :AGE+ 1 
EHD 

?AGE 
HOW OLD ARE YOU? 
1 1 
HEXT YEAR YOU WILL BE 12 

?AGE 
HOW OLD ARE YOU? 
35 
HEXT YEAR YOU WILL BE 36 

• Making Logo Write Information 

This section presents the primitives that you use to make Logo 
write information to a destination such as the screen. The 
primitives are 

PRINT 
SHOW 
TYPE 

Chapter 13: The Outside World 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 
1!!!!!!!!1 

I 

I 

I 

PRINT 

PRINT object {PR) {command) 
{PRINT object1 object2 .. . ) 

The PRINT command prints its inputs followed by a carriage 
return on the screen , unless the destination has been changed 
by SETWRITE. The outermost brackets of lists are not printed. 
Compare with TYPE and SHOW. 

Examples: 

?PRINT "A 
A 
?PRINT "A PRINT [A B Cl 
A 
A B C 
HPRINT uA [A s en 
A A B C 
?PRINT [ ] 

? 

TO REPRINT :MESSAGE :HOWMANY 
IF :HOWMANY < 1 [STOPJ 
PR :MESSAGE 
PR 
REPRINT :MESSAGE :HOWMANY-1 
END 

?REPRINT [TODAY IS FRIDAY!l 4 
TODAY IS FRIDAY! 

TODAY IS FRIDAY! 

TODAY IS FRIDAY! 

TODAY IS FRIDAY! 
? 

Making Logo Write Information 



SHOW 

SHOW object (command) 

I 

I 
The SHOW command prints object followed by a carriage return I 
on the screen, unless the destination has been changed by 
SETWRITE. If object is a list, Logo leaves brackets around it. 
Compare with TYPE and PRINT. I 
Examples: 

?SHOW "A 
A 
?SHOW "A SHOW [A B Cl 
A 
[A B Cl 

TYPE 
TYPE object 
(TYPE object1 object2 ... ) 

(command) 

The TYPE command prints its inputs without a carriage return 
on the screen , unless the destination has been changed by 
SETWRITE. The outermost brackets of lists are not printed. 
Compare with PRINT and SHOW. 

Examples: 

?TYPE "A 
A?TYPE "A TYPE [A B Cl 
AA B C?CTYPE "A [A B CD 
AA B C? 

Chapter 13: The Outside World 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

The procedure PROMPT types a message followed by a space: 

TO PROMP T : ME SSA GE 
TYPE : MESSA GE 
TYPE CH AR 32 
END 

TO MOVE 
PR OMP T [HOW MAN Y STEPS SHOULD I TAKE?) 
FD FI RST READ L IST 
MOVE 
END 

?MOVE 
HOW MANY STEPS SHOULD 
HOW MANY STEPS SHOULD 
HOW MANY STEPS SHOULD 
HOW MANY STEPS SHOULD 

• Making Sounds With TOOT 

TOOT frequency duration 

TAKE? 50 
TAKE? 37 
TAKE? 2 
TAKE? 108 

(command) 

TOOT generates a tone via a loudspeaker. The frequency is 
specified in Hertz (cycles per second). The tuning note A is 440. 
The duration can range from 0 to 65,535. It is measured in units 
of 1/60 of a second. 

Example: 

TO SI REN :FREQ 
IF :F REQ > 4 4 0 [STOPl 
TOOT : FREQ 3 
SIREN :F REQ + 5 
TOOT :FREQ 3 
END 

SIREN produces a siren sound of ascending and descending 
notes. 

Table 13-1 provides the frequencies of approximately seven 
octaves of notes. 

Making Sounds With TOOT 



Table 13-1. Note Frequencies for TOOT 

Note Frequency, by Octave 

B 62 123 247 494 988 1973 3946 

A# 58 117 233 466 932 1864 3743 

A 55 110 220 440 881 1761 3510 

G# 52 104 208 415 830 1663 3327 

G 49 98 196 392 784 1566 3142 

F# 46 92 185 370 740 1480 2959 

F 44 87 175 349 698 1398 2797 

E 41 82 165 330 659 1319 2637 

D# 39 78 156 311 622 1244 2495 4990 

D 37 73 147 294 587 1176 2346 4713 

C# 35 69 139 277 554 1109 2213 4426 

c 33 65 131 262 523 1047 2095 4172 
I 

Middle C 

Chapter 13: The Outside World 



('") 

I ~ 

Ql 

"0 

I 
<1l 

I ..... 
~ 

I 

I 

I • Managing Your Workspace 
176 Sizing Up Your Workspace 
176 NODES 

I 177 RECYCLE 
177 Printing From the Workspace 
177 PO 

I 178 PO ALL 
178 PON 
179 PONS 

I 179 POPS 
180 POT 
180 POTS 

I 180 Erasing From the Workspace 
181 ERALL 
181 ERASE 

I 181 ERN 
181 ERNS 
182 ERPS 

I 182 Cleaning and Organizing the Workspace 
182 BURY 
183 BURY ALL 

I 183 BURYNAME 
184 UN BURY 
184 UNBURYALL 

I 185 UNBURYNAME 

I 

I 

I Chapter 14: Managing Your Workspace 1173 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

See Chapters 15 and 16 for 
information on files. 

(') 

This chapter tells you how to manage the workspace in your 
Apple computer. Workspace is an area of the Apple's memory 
where Logo keeps your procedures, variables, and properties 
that it knows about right now. It does not include primitives. 

Logo provides primitives to let you 

• examine the size of your workspace and free up additional 
space there 

• see what you have in your workspace 

• selectively erase variables and procedures from your 
workspace 

• clean up and organize your workspace. 

The workspace is a temporary storage space. Your procedures, 
variables, and properties will be erased when you turn off the 
power of the computer. If you want to keep them for future use, 
you must store them on a disk in the form of files. 

Procedures and names in the workspace can be buried, making 
them invisible to global commands such as ERALL, ERPS, 
POALL, POPS, POTS, and SAVE. A buried procedure or name 
still exists in the workspace. Therefore, you can run, edit, print 
out, or erase a buried procedure, as long as you specify its 
name. 

The bury facility is useful for organizing your workspace. You 
can use it to selectively save procedures in different files. You 
can also use the bury facility to make procedures appear as 
primitives. For instance, you may want some of the procedures 
in Appendix B, Useful Tools, to be buried in the workspace. 

Chapter 14: Managing Your Workspace 



Here is an example of how to organize your workspace. 

?POTS 
TO SENGEN :NOUNS :VERBS 
TO PICK :OBJECT 
TO SUPERSENGEN 
TQ PQbY :§!Q~ :ANgb~ 
TO POLYSPI :SIDE :ANGLE :INC 
TO SQ :SIDE 
TO TRIANGULATE :WORD 

?PONS 
MAKE "NOUNS [COMPUTERS HOUSES BEDS CHAI! 
RS TV STEREO] 
MAKE "VERBS [PLAY COMPUTE LIE SIT [FALL! 

DOWNll 
MAKE "START HEADING 

I 

• 
• 
• 
• 
• 

You can group the procedures and variables by giving them I 
names. 

?MAKE "LANGUAGE [SENGEN PICK SUPERSENGENl 
?MAKE "LANGNAMES [NOUNS VERBS] 

Now use the bury feature to save them in a file. 

?BURYALL 
?UNBURY :LANGUAGE 
?UNBURYNAME :LANGNAMES 
?SAVE "LANGUAGE 

• Sizing Up Your Workspace 

See Appendix D, Memory Space. 

You use the primitives in this section to figure out how much 
free space you have in your workspace (NODES) and to free up 
as much workspace as possible (RECYCLE). 

NODES 

NODES (operation) 

NODES outputs the number of free nodes. This gives you an 
idea of how much space you have in your workspace for 
procedures, variables, properties, and the running of 
procedures. NODES is most useful if run immediately after 
RECYCLE. 

Chapter 14: Managing Your Workspace 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



• 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

See section "NODES" and also 
Appendix D, Memory Space. 

RECYCLE 

RECYCLE (command) 

The RECYCLE command frees up as many nodes as possible, 
performing what is called a garbage collection. When you don 't 
use RECYCLE, garbage collections happen automatically 
whenever necessary, but each one takes at least one second. 
Running RECYCLE before a time-dependent activity prevents 
the automatic garbage collector from slowing things down at an 
awkward time . 

• Printing From the Workspace 

fRis section tells you !low io print tile contents ot your 
workspace. The primitives to use for this are 

PO 
PO ALL 
PON 
PONS 
POPS 
POT 
POTS 

PO 
PO name(list) (command) 

The PO (for print out) command prints the definition(s) of the 
named procedure(s). 

Examples: 

?PO "LENGTH 
TO LENGTH :OBJ 
IF EMPTYP :OBJ COP Ol COP 1 + LENGTH BF! 

:OBJl 
END 
?PO [LENGTH GREETl 
TO LENGTH :OBJ 
IF EMPTYP :OBJ COP Ol COP 1 + LENGTH BF! 

:OBJl 
END 

Printing From the Workspace 



See section "BURY" for 
exceptions. 

TO GREET 
PR [GOOD MORNING. HOW ARE YOU TODAY?l 
END 

PO ALL 

PO ALL (command) 

The POALL (for print out all) command prints the definition of 
every procedure and the value of every variable in the 
workspace. 

Example: 

?POALL 
TO POLY :SIDE :ANGLE 
FD :SIDE 
RT :ANGLE 
POLY :SIDE :ANGLE 
END 

TO LENGTH :OBJ 
IF EMPTYP :OBJ [OP Ol [OP 1 +LENGTH BF! 

:OBJl 
END 

TO GREET 
PR [GOOD MORNING. HOW ARE YOU TODAY?] 
END 

TO SP I :SIDE :ANGLE : INC 
FD :SIDE 
RT :ANGLE 
SPI :SIDE + :INC :ANGLE :INC 
END 

MAKE "ANIMAL "AARDVARK 
MAKE "LENGTH 3.98 
MAKE "MYNAME "STEVE 

PON 

PON name(list) (command) 

PON (for print out name) prints the name and value of the 
named variable(s). 

Chapter 14: Managing Your Workspace 

• 

I 

I 

I 

I 



tl 

• --• 
• 
• -• 
• See section "BURY" for 

exceptions. • 
I 

I 

I 

I 

I 

I 

Examples: 

?PON 11 LENGTH 
MAKE 11 LENGTH 3.98 
?PON :LANGNAMES 
MAKE 11 NOUNS [COMPUTERS HOUSES BEDS CHAI! 
RS TV STEREO] 
.....,. ., ,... • t l r- ,.... T""'ot""" rn t A I l"'n M n i i TL I T L ~TT rL/\1 I I 

MAKE 11 VERBS [PLAY COMPUTE Ll E SIT [FALL! 
DOWNJJ 

PONS 

PONS (command) 

PONS (for print out names) prints the name and value of every 
variable in the workspace . 

Example: 

?PONS 
MAKE 11 F 3 
MAKE 11 Ll ST [A B c] 

.POPS 

POPS (command) 

POPS (for print out procedures) prints the definition of every 
procedure in the workspace . 

Example: 

?POPS 
TO POLY :SIDE :ANGLE 
FD :SIDE 
RT :ANGLE 
POLY :SIDE :ANGLE 
END 

TO SPI :SIDE :ANGLE :INC 
FD :SIDE 
RT :ANGLE 
SPI :SIDE+ :INC :ANGLE :INC 
END 

Printing From the Workspace 



See section "BURY" for 
exceptions. 

POT 

POT name(list) (command) 

The POT (for print out title) command prints the title line of the 
named procedure(s) in the workspace. 

Example: 

You may want to group some procedures by giving them a 
variable name: 

?MAKE " LANGUAGE [SENGEN PICK] 

To find out the titles in the LANGUAGE variable, use POT. 

?POT :LANGUAGE 
TO SENGEN :NOUNS :VERBS 
TO PICK :OBJECT 

POTS 

POTS (command) 

POTS (for print out titles) prints the title line of every procedure 
in the workspace. 

Examples: 

?POTS 
TO POLY :SIDE :ANGLE 
TO LENGTH :OBJ 
TO GREET 
TO SP I :SIDE :ANGLE : INC 

• Erasing From the Workspace 

This section tells you how to erase information from the 
workspace. The primitives for doing this are 

ERALL 
ERASE 
ERN 
ERNS 
ERPS 

Chapter 14: Managing Your Workspace 

• 
• 
• 
• 
• 
• 
I 

I 

• 
• 
• 
I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

See section "BURY" for 
exceptions. 

ERALL 
ERALL (command) 

ERALL erases all procedures, variables, and properties from the 
workspace. 

' 

ERASE 
ERASE name(list) (ER) (command) 

The ERASE command erases the named procedure(s) from the 
workspace. 

Examples: 

ERASE "TRIANGLE erases the TRIANGLE procedure. 
ERASE [TRIANGLE SQUARE l erases the TRIANGLE and 
SQUARE procedures. 

ERN 
ERN name(list) (command) 

The ERN (for erase name) command erases the named 
variable(s) from the workspace. 

Examples: 

I See the example using NOUNS ERN "LENGTH erases the LENGTH variable. 

I 

I 

I 

I 

I 

I 

and VERBS at the beginning of this 
cnapter. ERN : LAM~MAME§ @f§.§@§ U'l@ NOUN§ §.fld VERB§ variable§. 

See section "BURY" for 
exceptions. 

ERNS 
ERNS 

ERNS (for erase names) erases all variables from the 
workspace. 

Erasing From the Workspace 

(command) 



See section "BURY" for 
exceptions. 

ERPS 
ERPS (command) 

The ERPS (for erase procedures) command erases all 
procedures from the workspace. 

• Cleaning and Organizing the Workspace 

This section discusses the primitives that you use to manage 
your workspace effectively. The primitives for doing this are 

BURY 
BURY ALL 
BURYNAME 

UN§U~Y 
UN BURY ALL 
UNBURYNAME 

BURY 

BURY name(list) (command) 

The BURY command buries the procedure(s) in its input. 
Certain commands (ERALL, ERPS, POALL, POPS, POTS, and 
SAVE) act on everything in the workspace except procedures 
and names that are buried . 

Example: 

SAVE 11 GOODSTUFF saves the whole workspace in the file 
GOODSTUFF except procedures and names that are buried. 

Chapter 14: Managing Your Workspace 



I 

I See section "UNBURYALL" for 
unburying everything in the 
workspace . 

I 

I 

I 

I 

I 

I 

I 

I 
See section "UNBURYNAME" to 

I unbury variables. 

I 

I 

I 
I 

I 

BURY ALL 

BURY ALL (command) 

The BURY ALL command buries all the procedures and variable 
names in the workspace. 

Example: 

?POTS 
TO POLY :SIDE :ANGLE 
TO LENGTH :OBJ 
TO GREET 
TO SPI :SIDE :ANGLE :INC 
?PONS 
MAKE "ANIMAL "AARDVARK 
MAKE "LENGTH 3.98 
MAKE "MYNAME " STEVE 
?BURY ALL 
?POTS 

?PONS 

? 

Once BURY ALL is run , there are no procedure titles or names 
visible. 

BURYNAME 

BURYNAME name(list) 

BURYNAME buries the variable name(s) in its input. 

Example: 

?PONS 
MAKE "ANIMAL " AARDVARK 
MAKE "LENGTH 3.98 
MAKE "MYNAME " STEVE 
?BURYNAME " MYNAME 
?PONS 
MAKE "ANIMAL "AARDVARK 
~~~[ nu:~ef~ 3. §§ 

Cleaning and Organizing the Workspace 

(command) 



See section "BURY." 

UN BURY 

UNBURY name(list) (command) 

The UNBURY command unburies the named procedure(s) . 

UNBURYALL 

UNBURYALL (command) 

UNBURYALL unburies all procedures and variable names that 
are currently buried in the workspace. 

Example: 

?POTS 
?PONS 

There are no procedures or variable names printed . 

?UNBURYALL 
?POTS 
TO POLY :SIDE :ANGLE 
TO LENGTH :OBJ 
TO GREET 
TO SP1 :SIDE :ANGLE :INC 
?PONS 
MAKE 11 ANIMAL 11 AARDVARK 
MAKE 11 LENGTH 3.98 
MAKE 11 MYNAME 11 STEVE 

Once UNBURYALL is run , the procedures and variable names 

an~ ¥i§i91@: 

Chapter 14: Managing Your Workspace 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

UNBURYNAME 

UNBURYNAME name(list) (command) 

UNBURYNAME unburies the variable name(s) in its input. 

Example: 

?PONS 
? 

There are no variables visible. 

?UNBURYNAME [LENGTH NOUNSJ 
?PONS 
MAKE 11 LENGTH 3.98 
MAKE 11 NOUNS [COMPUTERS HOUSES BEDS CHAI! 
RS TV STEREOJ 

Cleaning and Organizing the Workspace 





I 

I 
CD 

I 

I 

I 

I • General File Management 
189 Logo's File System: Some General Information 

I 
189 What Is a File? 
190 Disk Formatting and Volume Names 
190 Disk Organization 

I 
192 Accessing Files 
194 General File System Primitives 
194 CATALOG 

I 
195 CREATEDIR 
196 EDITFILE 
196 ERASEFILE 

I 
196 FILEP 
197 LOADHELP 
197 ONLINE 

I 
198 POFILE 
198 PREFIX 
199 RENAME 

I 
199 SETPREFIX 

I 

I 

I 

I 

I Chapter 15: General File Management 



I 

I 

I 

I 

I 

I 
-
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

' ' I 

Chapter 16 gives you the primitives 
for working with the specific types 
of files . 

Logo uses four types of fi les in its file system: program files, 
picture files, dribble fil es, and data files. This chapter presents 
general information about Logo's file system, as well as the 
primiti ves that you use to manage all types of Logo files. 

This chapter is divided into two main sections, which provide 

• general information about the file system, including some 
terminology and ru les you need to use it 

• the primitives that deal with general file management. 

• Logo's File System: Some Genera/Information 

This section gives you the basics of Logo's file system and 
introduces you to the example that is used throughout the 
chapter to show the file-handling features. 

What Is a File? 

A file is a collection of information. Generally, this information 
is organized and stored on a disk. Logo creates different types 
of files on disk according to the nature of the information that is 
stored. 

There are four types of files you work with in Logo: program 
files, picture files, dribble files, and data files. A program file 
is a file of Logo procedures that you want to keep and use 
again later. A picture file is a file containing a picture that 
you 've created. A dribble file is a record of the text that is 
printed on the screen. A data file contains information that 
you want to keep track of, such as the addresses and 
telephone numbers of your friends. 

Logo's File System: Some General Information 



Although the nature of the files may be different, they are all 
organized on the disk in a similar manner. The next section I 
explains how files are organized by ProDOS-the operating 
system under which Logo runs. 

Disk Formatting and Volume Names 

Every disk must be formatted for use. The formatting process 
prepares a disk in three ways: 

• It divides the disk surface into uniform areas, called blocks, 
where ProDOS stores information. 

• It gives the disk a volume name that you select. 

• It writes a volume directory and other information that 
ProDOS needs to locate files. 

You must format all disks before using them to store any 
information. 

A volume is a formatted disk on which you keep files of 
information. Every volume has a name. Here are some 
examples of volume names: 

Volume 
Name 

/LOGO/ 

iMVoisi<i 
/LOGO.SAMP
LES/ 

Might Be Used for 

The disk you use to start up Logo 

A disk containing your work 

The fictitious disk used for the examples in 
this chapter 

You use volume names to tell Logo where to find the file you 
want to get or where to put the file you want to save. 

Disk Organization 
Files can be saved on disk in various ways. To get a listing of 
which files are on your disk, you use the CATALOG command. 
This listing of the names and sizes of files is called a 
directory. Whenever you try to open a file, ProDOS checks 
the volume directory to find the file on the disk. 

The disk volume MYDISK includes the following directory. 

Chapter 15: General File Management 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

?CATALOG 
/MYDISK/ 

PICTURES1 10 
POLYS 15 
SPIRALS 10 
GAME 10 
PHONELIST 20 
ADDRESS 10 

Blocks Free: 255 Blocks Used: 75 
? 

This directory contains files saved at the root of the directory. 
After you have accumulated a large number of files, this way of 
storing them on your disk might become cumbersome. 

ProDOS lets you classify your files on disk according to your 
own needs, using a subdirectory structure. LOGO.SAMPLES is 
gr~ani ?!g9 ~§in~ a §y§tgm gf §~MirgGtorig§ : §ubdiF@-=toFi@§ 
are files that contain lists of other files. 

Subdirectories are very useful in keeping your information 
organ ized. For example, on the disk /LOGO.SAMPLES/ there 
are three subdirectories. One (PROGRAMS) holds Logo 
programs; the second (PICTURES) holds graphics pictures; the 
third (DATA) contains data for your programs. 

The disk volume /LOGO.SAMPLES/ has the following volume 
directory: 

?CATALOG 
/LOGO.SAMPLES/ 

PROGRAMS/ 
PICTURES/ 
DATA/ 

Blocks Free: 138 Blocks Used: 142 
? 

Notice that the names of these files listed all end with a 
slash (/). The slash indicates that the files are subdirectories. 

Figure 15-1 shows you a diagram of the directory structure of 
the fictitious disk /LOGO.SAMPLES/. The directory structure 
shown in this figures is used in most of the examples 
throughout this chapter and in Chapter 16. 

Logo's File System: Some General Information 



CREATEDIR and ERASEFILE are 
explained in this chapter. 

I 
Figure 15·1. Files and Subdirectories on a Volume 

I 
/LOGO.SAMPLES/ 

I 
PROGRAMS/ PICTURES/ DATA/ 

I 
BEAR.PIC MEMBERS 

I 
CAT. PIC 

I 

I 

PHONELIST I 

I 
Notice that the subdirectories /LOGO.SAMPLES/PROGRAMS/ 
and /LOGO.SAMPLES/DATA/ contain additional subdirectories I 
that further organize what is stored . 

To create a subdirectory, use the CREATEDIR command . To 
erase a subdirectory, use the ERASEFILE (ERF) command. I 

Accessing Files I 
ProDOS checks through the various directory levels you 've set 
up whenever it needs to access a file on the disk. 1 
Ft!~ ~ ?< dn1F' I ~ , ttl d bct::::>::> tl1~ fil~ TIOTAOTOC tm the d iok 

/LOGO.SAMPLES/ you trace a path from /LOGO.SAMPLES/ to I 
PROGRAMS/ to GAMES/ and finally to TICTACTOE. 

I 

I 

Chapter 15: General File Management I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

The file 's full name or pathname is 

/LOGO.SAMPLES/PROGRAMS/GAMES/TICTACTOE 

I II II 
volume name subdirectory names filename 

Note: A filename can be from 1 to 15 characters long and 
must begin with a letter. The name can contain any letter 
from A through Z, any digit 0 through 9, and periods (.). 

A prefix is a pathname of a directory or subdirectory, which is 
automatically placed in front of a filename that does not begin 
with a slash (/) . 

There are two ways to gain access to the file TICT ACTOE: 

• Use the full pathname. For example: 

LOAD "/LOGO.SAMPLES/PROGRAMS/GAMES/TICT! 
ACTOE 

• Set the prefix to the subdirectory containing TICT ACTOE 
and then use only the filename. For example: 

SETPREFIX "/LOGO.SAMPLES/PROGRAMS/GAMES 
LOAD "TICTACTOE 

If you intend to use several files in the same subdirectory, the 
second method is easier. 

CATALOG uses the prefix each time it lists a directory. 

?CATALOG 
/LOGO. SAMPLES/PROGRAMS/GAMES/ (This is the prefix.) 
TICTACTOE 12 
DICE 5 
Blocks Free: 138 Blocks Used: 142 
? 

Logo's File System: Some General Information 



• General File System Primitives 

The rest of this chapter describes the primitives that perform 
general tile management tasks , such creating a subdirectory, 
checking which volumes are on line, and so on . These 
primitives apply to all files, regardless of the information stored 
in the tiles. The primitives are 

CATALOG 
CREATEDIR 
EDITFILE 
ERASE FILE 
FILEP 
LOAD HELP 

CATALOG 

CATALOG 

ONLINE 
PO FILE 
PREFIX 
RENAME 
SETPREFIX 

(command) 

CATALOG prints the names of the tiles in the current directory 
as well as the number of blocks used by each. The current 
directory is the directory pointed to by the current ProDOS 
prefix. 

Example: 

?CATALOG 
/LOGO.SAMPLES/ 
PROGRAMS/ 
PICTURES/ 
DATA/ 

(current ProDOS prefix) 
(subdirectory) 
(subdirectory) 
(subdirectory) 

Blocks Free: 138 
? 

Blocks Used: 142 

?SETPREFIX "PROGRAMS 
?CATALOG 
/LOGO.SAMPLES/PROGR
AMS/ 

(sets prefix) 

(current ProDOS prefix) 

GAMES/ 
PICTURES/ 
Blocks Free: 

(subdirectory) 
(subdirectory) 

138 Blocks Used: 142 
? 

Chapter 15: General File Management 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

?SETPREFIX 11 PICTURES 
?CATALOG 

To see what is in the subdirectory PICTURES: 

/LOGO.SAMPI ES/PROGRAMS/PICTURES/ {current ProDOS prefix) 
{filename) POLYS 2 

BEAR 3 {filename) 
Blocks Free: 138 Blocks Used: 142 
?SETPREFIX 11 /LOGO.SAMPLES/DATA/RECORDS 

?CATALOG 
/LOGO.SAMPLES/DATA/RECORDS/ 

ADDRESS 10 
PHONELIST 15 

(filename) 
{filename) 

Blocks Free: 138 Blocks Used: 142 
? 

CREATEDIR 

CREATEDIR pathname (command) 

CREATEDIR creates the subdirectory indicated by pathname. 
The last file name in pathname is the subdirectory to be 
created , and preceding names indicate where it should be 
placed. 

Examples: 

?CREATEDIR 11 /LOGO.SAMPLES/PROGRAMS/TOOLS 

creates the subdirectory TOOLS in the subdirectory 
PROGRAMS. If the ProDOS prefix is already set to 
/LOGO.SAMPLES/PROGRAMS/, then 

?CREATEDIR 11 TOOLS 

has the same effect. 

General File System Primitives 



I 
EDITFILE 

EDITFILE pathname (command) I 
EDITFILE loads the file indicated by pathname into the edit I 
buffer and saves the edited contents under the same filename. 
The old contents will be lost. 

For details on using the Editor, see You can use EDITFILE on any file , whether it exists or not. If it 
Chapter 4. does not exist, Logo creates it when you save the contents of 

the edit buffer. 

The edit buffer cannot hold more than 6144 characters. If the 
file you try to edit contains more than this, Logo displays an 
error message and does not let you edit the file. 

ERA§EFILE 
ERASEFILE pathname (ERF) (command) 

The ERASEFILE command erases the file indicated by 
pathname from the disk. If the input is a filename alone, the file 
must be located in the current directory. An error occurs if no 
file exists. 

Example: 

?ERASEFILE"/LOGO.SAMPLES/PRDGRAMS/PICTURES 
/BEAR 

erases the file called BEAR from the subdirectory PICTURES in 
the subdirectory PROGRAMS. 

ERASEFILE will also erase subdirectories, but only if they 
contain no files. An error occurs if you try to erase a 
subdirectory with files in it. 

FILEP 

Fl LEP path name (operation) 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 
FILEP outputs TRUE if a file indicated by pathname exists on 
the disk; otherwise it outputs FALSE. An error occurs if you try I 
to use FILEP on a device. 

I 

Chapter 15: General File Management I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Examples: 

?PRINT FILEP "/LDGO.SAMPLES/PROGRAMS/HA! 
NOI 
FALSE 

The file called HANOI does not exist. 

The REPLACEFILE procedure allows you to replace an old file 
with something new when saving on disk. 

TO REPLACEFILE :FILE 
IF FILEP :FILE [ERF :FILEJ 
SAVE :FILE 
END 

LOADHELP 

LOADHELP pathname (command) 

The LOADHELP primitive loads the file indicated by pathname 
into memory where the main help screen is stored. This 
primitive lets you write Logo programs that provide help to the 
user. 

The help screen is displayed any time the user presses @]-G) 
while the program is reading input from the keyboard. 

The file that you load must contain less than 1 023 characters . 
Spaces and carriage returns count as characters. You can use 
the EDITFILE command to create the text for your help screen 
and the FILELEN operation to verify that the file is not too long . 

Example: 

?LOADHELP "/LOGO.SAMPLES/NEWHELP 

ONLINE 

ONLINE (operation) 

ONLINE outputs the volume name of every disk on line. For 
example, if you have two disk drives connected , and a disk in 
each of them , ONLINE outputs the names of both those disks. 

General File System Primitives 



Example: 

?SHOW ONLINE 
[/LOGO.SAMPLES/J 

You might want to use ONLINE when you have a disk and you 
cannot remember the name you gave it. Just put it in a drive 
and type PR ONLINE. Logo displays the name of the disk. 

PO FILE 

POFILE pathname (command) 

POFILE (for print out file) prints out the contents of the file 

I 

I 

I 

I 

I 
indicated by pathname. Logo prints the contents to the screen. I 
An error occurs if you try to use POFILE on a file that is already 
open. 

This procedure can be used to copy a file: 

TO COPY :TO :FROM 
DRIBBLE :TO 
POFILE :FROM 
NODRIBBLE 
END 

To copy a file POLYS to a file SHAPES: 

?COPY "POLYS "SHAPES 

PREFIX 

PREFIX 

PREFIX outputs the current ProDOS prefix. You use 
SETPREFIX to set the prefix. 

?PR PREFIX 
/LOGO.SAMPLES/ 
?SETPREFIX "PICTURES 
?PR PREFIX 
/LOGO.SAMPLES/PICTURES/ 

Chapter 15: General File Management 

(operation) 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

RENAME 

RENAME pathname newpathname (command) 

The RENAME command finds the file indicated by pathname on 
the disk and changes its name to newpathname. The file's 
contents are not affected . Newpathname must specify a file in 
the same directory as pathname. 

Example: 

?RENAME "/LOGO.SAMPLES/DATA/ADDRESS "/L! 
OGO.SAMPLES/DATA/ADDRESS.OLD 

renames the file ADDRESS to ADDRESS. OLD. 

SETPREFIX 

SETPREFIX prefix (command) 

SETPREFIX tells Logo to set the ProDOS prefix to prefix. This 
command lets you access a file in the subdirectory named by 
prefix without having to type its full pathname. It also affects 
what the CATALOG command prints . 

Examples: 

?SETPREFIX "/LOGO.SAMPLES/PROGRAMS 
?CATALOG 
/LOGO.SAMPLES/PROGRAMS/ 

GAMES/ 
PICTURES/ 

Blocks Free: 138 Blocks Used: 142 
? 

You can now access the files or subdirectories under the 
subdirectory PROGRAMS-in th is case, GAMES and 
PICTURES-by the filenames alone. 

General File System Primitives 



I 
To access files in the root directory, 

?SETPREFIX "/LOGO.SAMPLES I ?CATALOG 
/LOGO.SAMPLES/ 

PROGRAMS/ I PICTURES/ 
DATA/ 

Blocks Free: 138 Blocks Used: 142 I ? 

I 

I 

I 

I 

I 

I 
·I 

I 

I 

I 

I 

I 

2001 Chapter 15: General File Management I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

• Managing Various Files I 
206 Working With Program Files 
206 LOAD I 206 SAVE 
207 SAVEL 
207 Working With Picture Files I 208 LOADPIC 
208 PRINTPIC 
208 SAVEPIC I ' 209 Working With Dribble Files 
209 DRIBBLE 
210 NODRIBBLE I 211 Working With Data Files 
211 Reading and Writing Information 
211 Opening Files I 212 ALLOPEN 
212 CLOSE 
213 CLOSEALL I> 214 FILELEN 
215 OPEN 
216 READER I 217 READPOS 
218 SETREAD 
218 SETREADPOS •• 219 SETWRITE 
220 SETWRITEPOS 
221 WRITEPOS II 221 WRITER 

I 

2021 Chapter 16: Managing Various Files I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

221 
222 
224 
225 

A Sample Project Using the Data File System 
Step 1: Creating a Data File 
Step 2: Retrieving Information 
Step 3: Changing Information 

Chapter 16: Managing Various Files 

CD 



I 

I 

I 

I 

I 

i 

I 

I 

I 

I 

-
I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

.I 

Chapter 15 describes general file 
management with Logo. 

This chapter gives you information about the various types of 
files that Logo uses. 

This chapter is divided into five main sections, which provide 

• the primitives for working with program files 

• the primitives for working with picture files 

• the primitives for working with dribble files 

• the primitives for working with data files 

• a sample project using data files. 

The examples in this chapter are based on the disk named 
LOGO.SAMPLES, which is used for illustration in the previous 
chapter. You may want to refer to that disk's overall directory 
structure (see Figure 15-1) when you are trying them out. 

(') 

::r 

OJ 

"0 

Logo reads information from three sources: files on a disk, the 
keyboard, and some devices that are attached to the computer. 
When you start up Logo, it reads information from the 
keyboard. 

Likewise, Logo writes information to three destinations: files on 
a disk, the screen, and the devices attached to the computer. 
When you start up Logo, it writes information onto the screen. 

Note: A device is a piece of hardware that is attached to 
the computer through a slot (on the Apple lie) or a port (on 
the Apple lie). It is important to note that Logo treats the 
keyboard, the screen, and other devices such as a printer, as 
files, just as it treats information on a disk as files. 

Chapter 16: Managing Various Files 



Some file primitives work with both files on disks and devices 
like printers. In this chapter, the input term file represents inputs 
of this kind. The devices are accessed through the port or slot 
number to which they are attached. The most common device 
you will access this way is a printer. A printer attached to port 1 
or slot 1 would be accessed by the number 1. 

• Working With Program Files 

This section tells you how to save and load files containing 
Logo programs. The primitives you use to do this are 

LOAD 
SAVE 
SAVEL 

LOAD 

LOAD pathname (command) 

I 

I 

I 

I 

I 

I 

I 

• The LOAD command loads the contents of the file indicated by 
pathname into the workspace, as if you typed it directly from 1 
top level. An error occurs if the file does not exist. An error also 
occurs if you try to load to a device. 

After Logo loads the contents of a file, it looks for a variable I 
called STARTUP. If one exists, Logo executes its contents. 

Examples: -

?SETPREFIX "/PROGRAMS/PICTURES 
?LOAD "BEAR 

Logo reads everything in the file BEAR into the workspace. 

SAVE 

SAVE pathname (command) 

I 
The SAVE command creates a file and saves in it all unburied 
procedures and variables and all properties in the workspace. 
Ari e ·fef eeeur If me rue you name a1reaay ex1sts. In th iS case, • 

I 

Chapter 16: Managing Various Files I 



I 

I 

I 

I 

I 

' I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

you should first either erase the existing file using ERASEFILE 
or rename it using RENAME. An error also occurs if you try to 
save to a device. 

Examples: 

?SAVE "/PROGRAMS/PICTURES/FACES 

saves the contents of the workspace in the file called FACES. 

SAVEL 

SAVEL name(list) pathname (command) 

The SAVEL command saves the procedures named in 
name(list) , and all the unburied variables and properties in the 
workspace to pathname. This command is useful for saving a 
portion of your workspace onto a disk. An error occurs if you 
try to save to a device using SAVEL. Compare it with SAVE. 

Example: 

?POTS 
TO TRI :OBJECT 
TO POLY :SIDE :ANGLE 
TO SPI :SIDE :ANGLE :INC 
TO INSPI :SIDE :ANGLE :INC 
TO WELCOME :NAME 

?SAVEL [POLY SPI INSPil "/LOGO.SAMPLES/! 
PROGRAMS/PICTURES/POLYS 

• Working With Picture Files 

This section describes the primitives you use to load, save, and 
print Logo pictures. The primitives are 

LOADPIC 
PRINTPIC 
SAVEPIC 

Working With Picture Files 



I 
LOADPIC 

LOADPIC pathname (command) I 

The LOADPIC command loads the picture named by pathname I 
onto the graphics screen. Logo will load any file onto the 
graphics screen. If the file is not a picture, something will be put I 
on the graphics screen, but you cannot be sure what it will be. 

Example: 

?LOADPIC "/LDGO.SAMPLES/PICTURES/CAT.PI! 
c 
loads the picture contained in the file CAT.PIC onto the 
graphics screen. 

PRINTPIC 

PRINTPIC integer (command) 

I 

I 

I 

I 
PRINTPIC prints the contents of the graphics screen to the 
printer in the slot or port named. You can print pictures only to 
the Apple lmagewriter printer. If you try to use this primitive I 
with other printers, the results are unpredictable. 

Example: I 
?PRINTPIC 

SAVEPIC I 
SAVEPIC pathname (command) 

I 
SAVEPIC saves the graphics screen into the file indicated by 
pathname. You can retrieve the screen later using LOADPIC. 1 
Example: 

?SAVEPIC "/LOGO.SAMPLES/PICTURES/CAT.PIC I 

I 

I 

Chapter 16: Managing Various Files I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• Working With Dribble Files 

This section describes the two primitives that you use to record 
the interactions between you and the Apple computer. The 
primitives are DRIBBLE and NODRIBBLE. 

DRIBBLE 

DRIBBLE file (command) 

DRIBBLE starts the process of sending a copy of the 
characters displayed on the text screen to file. DRIBBLE 
records interactions between the Apple computer and the 
person at the keyboard. DRIBBLE automatically opens file. 
NODRIBBLE stops the process of dribbling. 

You cannot use SETREAD or SETWRITE with a dribble file 
while still dribbling. However, once a dribble file on disk has 
been closed with NODRIBBLE, you can treat it like any other 
file. You can then open it, read from it, or write to it. 

Note that only one dribble file can be open at one time. 

Examples: 

?DRIBBLE /DATA/RECDRDS/JUNE1.DRIB 

creates a file called JUNE1 .DRIB and starts the dribbling 
process. Every line appearing after DRIBBLE is sent to this file. 

?CS 
?FD 100 
?RT 80 
?FD 50 
?NODRIBBLE 

Working With Dribble Files 



DRIBBLE can be used to print the contents of a file to the 
printer. 

TO DUMP :FILE 
DRIBBLE 1 
POFILE :FILE 
NODRIBBLE 
END 

NODRIBBLE 

NODRIBBLE (command) 

NODRIBBLE turns off the dribble feature so a copy of the 
characters from the screen will no longer be sent to the file or 
device named previously by the DRIBBLE command. 

Exam pies: 

?DRIBBLE "/LOGO.SAMPLES/DATA/RECORDS/CL! 
ASS.DRIB 

creates a file called CLASS.DRIB and starts the dribbling 
process. 

I 

I 

• 
I 

I 

I 

I 

I 

?REPEAT 5 (PR RANDOM 10] II 
8 

~ I 
3 
2 
?NODRIBBLE II 
Everything put on the text screen after the DRIBBLE line is sent 
to the file CLASS.DRIB. Now, if you print out the file 1 
CLASS.DRIB, you will see what you just typed. 

?POFILE "/LOGO.SAMPLES/DATA/RECORDS/CLA! • 
SS.DRIB • 
?REPEAT 5 (PR RANDOM 101 

~ I 
3 

~ . 
?NODRIBBLE 

I 

Chapter 16: Managing Various Files I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• Working With Data Files 

This section gives you information about 

• reading and writing information in data files 

• opening and closing data files 

• the primitives that work with data files . 

Reading and Writing Information 

With Logo 's file system, there is always a current file open for 
reading , called the reader, and a current file open for writing, 
called the writer. When you start up Logo, Logo assumes that 
the current reader is the keyboard and the current writer is the 
screen . You can change the current reader and writer files with 
the SETREAD and SETWRITE commands, which are described 
later in this chapter. 

When the current reader or writer is a file on disk, there are 
current positions in the file where Logo will start reading or 
writing . For example, when Logo opens a file , it is ready to read 
from the beginning of the file and write at the end . You can 
change the read and write positions with the SETREADPOS and 
SETWRITEPOS commands, which are described later in this 
chapter. 

Opening Files 

You must open a file or device with the OPEN command before 
you can read from it or write to it. Only one device can be open 
at a time although you can open as many as six files . So, if a 
device is currently open , you cannot use a primitive that 
automatically opens and closes devices. For example, you 
cannot use the DRIBBLE command for a printer in slot 1 or 
port 1 if slot 2 or port 2 is already open. 

The data file primitives are 

ALLOPEN 
CLOSE 
CLOSEALL 
FILE LEN 
OPEN 

READER 
READPOS 
SETREAD 
SETREADPOS 

Working With Data Files 

SETWRITE 
SETWRITEPOS 
WRITEPOS 
WRITER 



ALL OPEN 
ALLOPEN (operation) 

ALLOPEN outputs a list of all tiles and devices currently open. 
The OPEN command opens a tile or a device. 

?PRINT ALLOPEN 

? 

No tiles or devices are open. 

?PRINT ALLOPEN 
1 PHONELIST 

The device in slot 1 or port 1 (the printer) and the file called 
PHONELIST are open. 

The procedure BYE makes sure all tiles are closed before you 
turn ott the machine. 

TO BYE 
IF NOT EMPTYP ALLOPEN [CLOSEALLl 
PR [YOU CAN NOW TURN OFF THE POWER.] 
END 

CLOSE 
CLOSE file (command) 

The CLOSE command closes the named tile or device that is 
currently open . See OPEN to open a tile or device. An error 
occurs if you try to Use eL6§~ Witli a file 6f aeVice tliat i§ A6t 
open. An error also occurs it you try to use CLOSE with a tile 
that is opened by the DRIBBLE command . 

.A Warning 
It is important that you never turn off your computer while files 
are open. This can damage the integrity of your disk. 

2121 Chapter 16: Managing Various Files 



I 

I 

I 

I 

I 

I 

I 

I 

I 
See section "NODRIBBLE" for 

I closing dribble f iles. 

I 

I 

I 

I 

I 

I 

I 

Examples: 

?CLOSE " /LOGO . SAMPLES/DATA/PHONELIST 

closes the file called PHONELIST. 

The STORE procedure opens a file , sends data to it, and closes 
the file . 

TO STORE :FILE : DATA 
OPEN :FILE 
SETWRITE :FILE 
PRINT :DATA 
SETWRITE [l 

CLOSE :FILE 
END 

?STORE "/LOGO.SAMPLES/DATA/PHONELIST [B! 
ARBARA: 765-42011 

The name and telephone number are written to the file called 
PHONELIST. 

CLOSEALL 

CLOSEALL (command) 

The CLOSEALL command closes all files and devices that are 
currently open . Dribble files are not closed with CLOSEALL. 

Use the OPEN and CLOSE commands to open and close one 
file at a time. If you try to use CLOSEALL when no files or 
device are open, it is ignored. 

?OPEN 1 
?OPEN " /LOGO.SAMPLES/DATA/PHONELIST 

You opened the printer in slot 1 or port 1, and a file called 
PHONELIST. After sending data to the file and to the printer, 
you can close both by typing 

?CLOSEALL 

Working With Data Files 



See the CLOSE and CLOSEALL 
commands. 

FILE LEN 

FILELEN pathname (operation) 

FILELEN outputs the length in bytes of the contents of the file 
indicated by pathname. The file must be open to use this 
primitive. An error occurs if the file is not open . 

Example: 

?OPEN "/LOGO.SAMPLES/DATA/RECORDS/ADDRE! 
SSES 
?PRINT FILELEN "/LOGO.SAMPLES/DATA/RECO! 
RDS/ADDRESSES 
128 

The file called ADDRESSES already has 128 bytes of data. 

TO FILLIN :FILE :LEN 
OPEN :FILE 
SETWRITE :FILE 
MAKE "SPACE :LEN - FILELEN :FILE 
IF :SPACE > 0 [REPEAT :SPACE [TYPE Oll 
SETWRITE [l 
CLOSE :FILE 
END 

The procedure FILLIN opens the file :FILE and fills it in with 
zeros so the file will be :LEN bytes long. 

OPEN 

OPEN file (command) 

The OPEN command opens file so it can send or receive 
characters. You must open a data file before you can access it. 
Note that you can open only one device at a time. 

You can open a maximum of six disk files at once. If the file 
named by file does not exist , then OPEN creates the file. When 
you finish using Logo, you must close all devices or files that 
are open. 

Chapter 16: Managing Various Files 

I 

I 

I 

I 

I 

I 



I 

I 

I 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Example: 

TO READFILE :FILE 
SETREAD :FILE 
IF EQUALP FILELEN :FILE READPOS [SETREA! 
D [J CLOSE :FILE STOPJ 
PRINT READLIST 
READF I LE :FILE 
END 

?SETPREFIX "/LOGO.SAMPLES/DATA/RECORDS 
?OPEN "ADDRESSES 
?~~~BFi b ~ "~BB~~§§~§ 
ADDRESS LIST 
MARIE: 55 CEDARWOOD 
LOGO: 9960 COTE DE LIESSE 

The READFILE procedure reads information from a file that is 
already open until the end-of-file position (EQUALP FILELEN 
:FILE READPOS) is reached . At that time, the file is closed and 
execution of the procedure stops. 

READER 

READER (operation) 

READER outputs the current file that is open for reading . You 
can change the current read file with the SETREAD primitive. 
READER returns the name of the file or the empty list if the 
current reader is the keyboard . 

Examples: 

?PRINT READER 
/LOGO.SAMPLES/DATA/RECORDS/ADDRESS 

The file called ADDRESS in the subdirectory DATA/RECORDS 
is the current read file. 

Working With Data Files 



TO CHECKREAD :FILE 
IF NOT EQUALP READER :FILE [OPEN :FILE 
SETREAD :FILEl 
IF EQUALP FILELEN :FILE READPOS [CLOSE 
:FILE SETREAD [l STOPl 
PRINT READLIST 
CHECKREAD :FILE 
END 
?CHECKREAD 11 /LOGO.SAMPLES/DATA/CLASS.LI! 
ST 
ERIC BROWN 
MICHAEL QUINN 
CHERYL BARTLEY 
JENNY SPARROW 

The CHECKREAD procedure checks to see if the file it has as 
input is the current read file . If it is not, CHECKREAD opens the 
file , makes it the current read file, and then reads until reaching 
the end-of-file position . 

READPOS 

READPOS (operation) 

I 

I 

I 

I 

I 

I 

I 

I 

READPOS (for READ POSition) outputs the position in the 
current reader. An error occurs if the current reader is the I 
keyboard or a device. To set the position in the read file, see 
the SETREADPOS command. 

Examples: I 
?SETPREFIX "/LOGO.SAMPLES/DATA/RECORDS 
?OPEN "PHONEL I ST I 
?SETREAD "PHONELIST 
?PRINT READPOS 
o I 
If you have just opened a file , READPOS outputs 0. 

The procedure LISTFILE lists the information stored in the read I 
file , along with a number indicating where each line is stored. 

I 

I 

Chapter 16: Managing Various Files I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

TO LISTFILE :FILE 
IF EQUALP FILELEN :FILE READPOS [STOPl 
PRINT READPOS 
PRINT READWORD 
LISTFILE :FILE 
END 

?OPEN "PHONELIST 
?SETREAD "PHONELIST 
?LISTFILE "PHONELIST 
0 
PASCAL 545-2654 
16 
MARIO 631-2222 

SETREAD 

SETREAD file (command) 

SETREAD sets the current reader to file. After you give this 
command, READLIST, READWORD, READCHAR , and 
READCHARS read information from this file . 

Before you use SETREAD, you must open the file with the 
OPEN command. An error occurs if the file is not open. To set 
the current reader back to the keyboard , give SETREAD the 
empty list as input. 

Examples: 

?SETPREFIX "/LOGO.SAMPLES/DATA 
?OPEN "PHONELIST 
?SE TR EAD "PH ONELIS T 
?PRINT READPOS 
0 

The reader is set to PHONELIST and the read position is at the 
beginning of the file. 

?PRINT READWORD 
PASCAL: 545-2654 

READLIST reads from the current reader. To set the reader 
back to the keyboard : 

?SETREAD [] 

Working With Data Files 



See section "READPOS" for more 
information about the 
SETREADPOS command. 

SETREADPOS 

SETREADPOS integer (command) 

SETREADPOS sets the read position in the current reader. The 
integer should be a number between 0 and the current length of 
the file. An error occurs if it is not in this range. An error also 
occurs if the current reader is the keyboard or a device. 

Examples: 

?OPEl'! 11 PHOHELIST 
?SETREAD 11 PHOHELIST 
?SETREADPOS 2 
?PRIHT READCHAR 
5 

, . , - ·· - ·· - · · - ........ . , _ _ _ • __ ..._ __ L. _ ___ ___ _..: __ ,... _ _ _ 

The file PHONELIST is opened and set up for reading . The read 
position is set to 2, and the character at that position is printed. 

TO FILERL :POS 
SETREADPOS :POS 
OUTPUT READWORD 
EHD 

?PRIHT FILERL 34 
REHAUD 734-8374 

The FILERL procedure outputs the list found at the file position 
you gave as input. 

SETWRITE 

SETWRITE file (command) 

SETWRITE sets the current writer to the file you name. The 
primitives PRINT, TYPE, and SHOW all print to the current 
writer. You cannot use SETWRITE unless the file has previously 
been opened . 

To restore the screen as the current writer, use the SETWRITE 
command with the empty list as input. 

Chapter 16: Managing Various Files 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Note: The commands PO, POALL, PON, PONS, POPS, POT, 
POTS, and POFILE all print to the screen but not to the 
current writer. 

Examples: 

?OPEN 1 
?SETWRITE 

Now the various print commands will send information to the 
device in slot 1 or port 1. 

?PRINT [LOGO TELEPHONE DIRECTORY] 

If the device in slot 1 or port 1 is a printer, LOGO 
TELEPHONE DIRECTORY is printed there . 

?SETWRITE [J 

The current writer is set back to the screen . 

TO STORE :FILE :DATA 
OPEN :FILE 
SETWRITE :FILE 
PRINT :DATA 
SETWRITE [J 

CLOSE :FILE 
END 

?STORE "PHONELIST [BRIAN: 451-25131 

SETWRITEPOS 

SETWRITEPOS integer (command) 

SETWRITEPOS sets the write position in the current file . This 
command is useful when modifying information in a file. You 
must set the write position to a number that is between 0 and 
the end-of-file position. If you try to set it somewhere out of this 
range , an error occurs. 

An error also occurs if you try to set the write position when 
the current writer is the screen or a device. 

To check the current position , use the WRITEPOS command. 

Working With Data Files 



Examples: 

?OPEN "PHONELIST 
?SETWR I TE "PHONELI ST 
?SETWRITEPOS 0 
?PRINT [MARIE 935-33951 
?SETWRITE [] 

The file PHONELIST is opened, selected for writing, and the 
write position is set to 0 (it was at the end of the file when the 
file was opened). The list that is printed replaces whatever was 
at the beginning of the file. 

WRITEPOS 

WRITEPOS (operation) 

I 

I 

I 

I 

I 

I 
WRITEPOS (for write position) outputs where in the current 1 
write file the the next character will be written. An error occurs 
if the current writer is the screen or a device. 

Examples: 

?OPEN "PHONELIST 

I 
? SETWR I TE "PHONELI ST I 
?MAKE "POS WRITEPOS 
?SETWRITE [] 
?PR :POS II 
33 

Notice that you can 't use PRINT WRITEPOS directly because I 
the write position will be printed into the file PHONELIST. 

The QHEQKPQ§ prgg~gu r~ print§ th~ til§ pg§ition gf th~ 
current writer. I 
TO CHECKPOS 
MAKE "POS WR I TEPOS I 
MAKE "FILE WRITER 
SETWRITE [] 
PR :POS 
SETWRITE :FILE II 
END 

? CHECKPOS "PHONEL I ST I 
33 

I 

Chapter 16: Managing Various Files I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

WRITER 

WRITER (operation) 

WRITER outputs the current file or device that is open for 
writing. Compare this with the ALLOPEN operation. 

Examples: 

TO CHECKWRITE :FILE :DATA 
IF NOT MEMBERP :FILE ALLOPEN [OPEN :FIL! 
El 
MAKE "OLDWRITER WRITER 
SETWRITE :FILE 
PRINT :DATA 
SETWRITE :OLDWRITER 
END 

?CHECKWRITE "/LOGO.SAMPLES/DATA/CLASS.L! 
IST [KIYOKO OKUMURA] 

The CHECKWRITE procedure first determines if a file is open. If 
it is not, CHECKWRITE opens the file, makes it the current 
writer, and sends data to it. CHECKWRITE maintains the 
original writer. 

• A Sample Project Using the Data File System 

This section examines the data file system, using a telephone 
directory project as a example. You want to store the telephone 
numbers of the members of a social club. The objectives of the 
project are: 

1. To store the members' names and their phone numbers. 

2. To find a particular member's phone number. 

3. To change a member's phone number. 

A Sample Project Using the Data File System 



Step 1: Creating a Data File 

Here is a procedure that reads the name and phone number of 
someone from the keyboard . 

TO ASKINFO 
PRINT [Type in the member's name:] 
MAKE " NAME READWORD 
PRINT [Type in the phone number:] 
MAKE " TEL READWORD 
END 

ASKINFO prints the message on the screen, takes the answer 
from the keyboard , and gives a name to this answer. When 
ASKINFO finishes its job, it creates two variables: one is called 
NAME and the other TEL. The next step is to write the 
information into a file . 

Logo lets you write to files (or devices) as easily as you can 
write to the screen . In addition , Logo lets you read from a file 
as easily as you read from the keyboard . 

The SETWRITE command is used to direct information to 
different files or devices. 

TO WRITEINFO 
SETWRITE "MEMBERS 
PRINT :NAME 
PRINT :TEL 
SETWRITE [] 

END 

(MEMBERS is the filename) 

(directs output back to the 
screen) 

All that remains now is to write the superprocedure to open the 
data file called MEMBERS, run these subprocedures, and close 
the file . 

TO SAVEINFO 
OPEN "MEMBERS 
ASK INFO 
WRITE INFO 
CLOSE "MEMBERS 
END 

Chapter 16: Managing Various Files 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

Let 's try the procedure now. 

?SAVE INFO 
Type in the member's name: 
Mario Carriere 
Type in the phone number: 
423-5800 
? 

The program finished running, but you can 't see what happened 
to the data file. To check the result, print out the file. 

?POFILE "MEMBERS 

Logo displays everything written in the data file MEMBERS. 

Mario Carriere 
423-5800 

What happens if we run the procedure again? 

?SAVE INFO 
Type in the member's name: 
Renaud Nadeau 
Type in the phone number: 
392-1563 
? 

SAVEINFO worked just like it did the first time. Now look at the 
result. 

?POFILE "MEMBERS 
Mario Carriere 
423-5800 
Renaud Nadeau 
392-1563 
? 

The procedures work for adding more members as well as for 
creating the data file for the first time. 

A Sample Project Using the Data File System 



Step 2: Retrieving Information 

After creating the data file containing names and phone 
numbers, the next step is to build a program to find a particular 
member's phone number. 

TO FINDINFO 
PRINT [Type in the member's name: ] 
MAKE "NAME READLIST 
OPEN "MEMBERS 
SETREAD "MEMBERS 
FINDTEL :NAME 
SETREAD [] 
CLOSE "MEMBERS 
END 

TO FINDTEL :NAME 
IF READLIST = :NAME [PR SE [The phone n! 
umber is:] READWORD STOPJ 
IF EQUALP FILELEN "MEMBERS READPOS [PR ! 
[Can't find this name.] STOP] 
FINDTEL :NAME 
END 

FINDINFO is the superprocedure. First, it reads from the 
keyboard the name of the person whose phone number is 
wanted. Then, it opens the data file and tells Logo that it wants 
to read information from this data file. 

The subprocedure FINDTEL starts reading line by line (using 
READLIST) from the beginning of this data file . Each time it 
reads a line, FINDTEL compares the line with the name it is 
looking for. If they are identical, it reads another line and prints 
the sentence 

The phone number is: 

If not, it checks to see if READLIST has reached the end-of-file 
position (EQUALP FILELEN "MEMBERS READPOS). If the 
end-of-file position has been reached, FINDTEL prints the 
message 

Can't find this name. 

Chapter 16: Managing Various Files 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Step 3: Changing Information 

A member's phone number may change, so you must be able 
to update the data in the file . To modify part of the data, you 
must know the location of the information to be changed. The 
procedures to retrieve the information (FINDINFO and FINDTEL) 
can be used for this purpose. Once the location is found, you 
can write the procedure MODIFY, which rewrites the information 
at this location. 

TO MODIFY :LOCATION 
PRINT [Type in the new phone number:] 
SETREAD [] 
SETWRITE "MEMBERS 
SETWRITEPOS :LOCATION 
PRINT READWORD 
SETWRITE [] 
END 

SETREAD [] tells Logo that you want to read the data from the 
keyboard . SETWRITE "MEMBERS tells Logo that you want to 
direct the next PRINT command to write the new data into the 
MEM§§A_§ file. §~TWA.IT~P5§ :L5eATI5N ffiak@§ §UF@ t~at it 
is written at the current location . 

Thus, the command PRINT READWORD picks up data from the 
keyboard and prints it into the file. 

Now you must incorporate this procedure into a new FINDTEL 
procedure. FINDTEL2 will read the file line by line comparing 
each line to the name it is looking for. It will then call MODIFY 
with the LOCATION it gets from READPOS in the procedure 
FINDTEL. READPOS is the input to MODIFY. Let's change the 
name of the superprocedure FINDINFO to MODINFO. 

A Sample Project Using the Data File System 



TO MODINFO 
PRINT [Type in the member's name:] 
MAKE "NAME READLIST 
OPEN "MEMBERS 
SETREAD "MEMBERS 
FINDTEL2 :NAME 
SETREAD [) 
CLOSE "MEMBERS 
END 

TO FINDTEL2 :NAME 
IF RL = :NAME [MODIFY READPOS STOP] 
IF EQUALP FILELEN "MEMBERS READPOS [PR! 
[Can't find the name.] STOP] 

FINDTEL2 :NAME 
END 

Chapter 16: Managing Various Files 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I (') 

::::r 

Ill 

I "0 

CD 

I 
"""' 

-...j 

I 

I 

I • Property Lists 
229 Using Property Lists to Keep Records 

I 
230 ERPROPS 
230 GPROP 
231 PLIST 

I 
232 PPROP 
232 PPS 
233 REM PROP 

I 

I 

I 

I 

I 

I 

I 

I 

I Chapter 17: Property Lists 1227 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

r .I 

I 

I 

I 

I 

I 

I 

I 

I 

I I 

·I 

·I 

.I 

SAVE and SAVEL are described in 
Chapter 16. 

Any Logo word can have a property list associated with it. A 
property list consists of an even number of elements. Each 
pair of elements consists of a property, and its value, a word or 
a list . 

A property list has the form [prop1 val1 prop2 val2 ... ]. You can 
manipulate property lists using the primitives in this section: 

ERPROPS 
GPROP 
PLIST 
PPROP 
PPS 
REM PROP 

The commands SAVE and SAVEL save property lists in files at 
the same time they save procedures and variable names. 

• Using Property Lists to Keep Records 

Property lists can be very useful in keeping records or other 
structured data bases. The following example is used as a 
context for explaining the property list primitives. 

Suppose you want to keep track of the telephone numbers and 
birthdays of your friends. Invent a Logo word, say F1 , to act as 
a placekeeper for your first friend. Then write 

PPROP "F1 "NAME [BRIAN SILVERMAN] 
PPROP "F1 "PHONE [514 555 41231 
PPROP "F1 "BIRTHDAY [SEPT 231 

Using Property Lists to Keep Records 



Do this for all your friends , giving your second friend the 
placekeeping word F2 and so on. For example: 

PPROP "F2 "NAME [EFFIE MANIATIS] 
PPROP "F2 "PHONE [514 631 6123] 
PPROP "F2 "BIRTHDAY [MAY 20] 

PPROP "F3 "NAME [MICHAEL QUINN] 
PPROP "F3 "PHONE [619 742 5555] 
PPROP "F3 "BIRTHDAY [DEC 3] 

After you have fin ished , make a list of the placekeeping words 
like this : 

MAKE "FRIENDS [F1 F2 F3 ] 

I 

I 

I 

I 

I 
You can then use GPROP to write procedures that search 1 
through the list FRIENDS to do such things as find a given · 
friend 's birthday or list all your friends with the same area code. 
Examples of such procedures appear with the primitive 1 
descriptions that follow . 

• ERPROPS I 

• GPROP 

ERPROPS (command) 

ERPROPS (for erase properties) erases all properties from the 
workspace. To check which property lists are currently in the 
workspace , use PPS. Use REMPROP to remove properties one 
at a time from the workspace. 

GPROP name property (operation) 

I 

I 

I 

I 

I 
GPROP (for get property) outputs the value of property of 
name. If there is no such property, GPROP outputs the empty 
list. I ' 
Examples: 

?SHOW GPROP "F1 "NAME 
[BRIAN SILVERMAN] 

Chapter 17: Property Lists 

I 

I 

I 



I 

I 

I 

I 

I 

I • PLIST 

I 

I 

I 

I 

I 

I 

I 

I 

The phone list procedure lists your friends ' names and phone 
numbers. 

TO PHONELIST :FRIENDS 
IF EMPTYP :FRIENDS [STOPJ 
PR SE GPROP FIRST :FRIENDS "NAME GPROP 
FIRST :FRIENDS "PHONE 
PHONELIST BF :FRIENDS 
END 

?PHONELIST :FRIENDS 
BRIAN SILVERMAN 514 555 4123 
EFFIE MANIATIS 514 631 6123 
MICHAEL QUINN 619 742 5555 

PLIST name (operation) 

PLIST outputs the property list associated with name. This is a 
list of property names paired with their values, in the form 

[prop1 val1 prop2 val2 ... ] . 

Example: 

?SHOW PLIST "F2 
[NAME [EFFIE MANIATISJ BIRTHDAY [MAY 20! 
JPHONE [514 631 6123JJ 

The FINDBIRTH procedure outputs the birthday of a given 
friend. 

TO FINDBIRTH :FRIEND :FRIENDS 
IF EMPTYP :FRIENDS [OP [NONEJ J 
IF EQUALP FIRST BF PLIST FIRST :FRIENDS! 

:FRIEND [OP GPROP FIRST :FRIENDS "BIRT! 
HDAYJ 
OP FINDBIRTH :FRIEND BF :FRIENDS 
END 

?PR FINDBIRTH [MICHAEL QUINNJ : FRIENDS 
DEC 3 

PLIST 



• PPROP 

. PPS 

PPROP name property object (command) 

The PPROP (for put property) command gives name 
property with value object. Note that ERALL erases procedures, 
variables , and properties. Use REMPROP to erase properties 
one at a time or ERPROPS to erase them all at once. 

Example: 

?SHOW PLIST "F3 
[NAME [MICHAEL QUINN] PHONE [619 742 55! 
551 BIRTHDAY [DEC 3ll 

?PPROP "F3 "ADDRESS [55 OAKRIDGE] 
?SHOW PLIST "F3 
[NAME [MICHAEL QUINNl PHONE [619 742 55! 
551 BIRTHDAY [DEC 31 ADDRESS [55 OAKRID! 
GEl l 

PPS (command) 

The PPS (for print properties) command prints the property lists 
of everything in the workspace. 

Example: 

?PPS 
PPROP "F3 "NAME [MICHAEL QUINNl 
PPROP "F3 "PHONE [619 742 5555] 
PPROP "F3 "BIRTHDAY [DEC 31 
PPROP "F3 "ADDRESS [55 OAKRIDGE] 
PPROP "F2 "NAME [EFFIE MANIATIS] 
PPROP "F2 "PHONE [514 631 61231 
PPROP "F2 "BIRTHDAY [MAY 201 
PPROP "F1 "NAME [BRIAN SILVERMAN] 
PPROP "F1 "PHONE [514 555 41231 
PPROP "F1 "BIRTHDAY [SEPT 231 

Chapter 17: Property Lists 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• REM PROP 

See also sections "PPROP" and 
"GPROP." 

REMPROP name property (command) 

The REMPROP (for remove property) command removes 
property from the property list of name. 

Example: 

? SHOW PLIST "F1 
[NAME [BRIAN SILVERMAN] BIRTHDAY [SEPT 
231 PHONE [514 555 412311 
?REMPROP "F1 "PHONE 
?SHOW PLIST "F1 
[NAME [BRIAN SILVERMAN] BIRTHDAY [SEPT 
23]] 

REMPROP 1233 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I • 
I 

I 

I 

·I 

I 

I 

I 

I 

I 

I 

I 

Special Primitives 
238 
238 
241 
241 
241 
242 
242 
242 
242 
242 
243 
243 
243 
243 
245 
245 
245 

Assembly-Language Primitives 
Some Specifics About the Apple 's Memory 

Using Buffer Space 
Using Node Space 

.AUXDEPOSIT 

.AUXEXAMINE 

.BLOAD 

.BSAVE 

.CALL 

.DEPOSIT 

.EXAMINE 
Special Graphics Primitives 

.SCRUNCH 

.SETSCRUNCH 
Miscellaneous Primitives 

.CONTENTS 

.QUIT 

Chapter 18: Special Primitives 

(") 

co 

CXl 



• 

I 

I 

I 

I 

I 

I 

I 

II 



I 

I 

I 

I 

' I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

(') 

CXl 

This chapter presents some special primitives that may affect 
the Logo system itself. These primitives give you the power of 
directly accessing the computer memory or modifying what 's in 
it. At the same time they are dangerous primitives because you 
can destroy the contents of your workspace in Logo by using 
them carelessly. If that happens, you will need to restart Logo. 
The names of these primitives start with a period to warn you 
that they are dangerous. You should save your work before 
experimenting with them. 

The special primitives appear in three groups: 

• assembly-language and direct-memory-access primitives 

• special graphics primitives 

• miscellaneous primitives. 

Chapter 18: Special Primitives 



• Assembly-Language Primitives 

See the technical reference manual 
for your computer for a more 
complete explanation of the 
memory layout. 

This section explains the special primitives that allow you to use 
assembly-language programs from Logo and to directly access 
memory. It also gives you some specific information about the 
Apple 's memory that is useful for programming in assembly 
language. 

The primitives appear in this order: 

.AUXDEPOSIT 

.AUXEXAMINE 

.BLOAD 

.BSAVE 

.CALL 

.DEPOSIT 

.EXAMINE 

Some Specifics About the Apple's Memory 

The Apple ll 's memory is divided into two 64K banks: the main 
bank and the auxiliary bank. The following memory maps show 
you how Logo uses these two banks. 

Chapter 18: Special Primitives 



I 
Figure 18·1. Map of Main Memory Bank 

I Main Memory 

FFFF 

I ProDOS 
DOOO 

1/0 Space 

I cooo 
Free Space and ProDOS 

BFOO 

I Logo Code 
6100 

Logo Data 

I 6000 
File Buffer 5 

5COO 

I File Buffer 4 
5800 

File Buffer 3 

I 5400 
File Buffer 2 

5000 

I File Buffer 
4COO 

File Buffer 0 

I 4800 
Dribble Buffer 

4400 

I Load/Save Buffer 
4000 

Hi-Res Graphics 

I 2000 
Edit Buffer 

800 

I Text Screen 
400 

Logo Data 

I 0 

I 

I l. Assembly-Language Primitives 1239 



Figure 18·2. Map of Auxiliary Memory Bank 

Auxiliary Memory 

FFFF 
ProDOS 

EOOO 
Logo Code 

DODO 
1/0 Space 

cooo 
ProDOS 

8FOO 
Editor Help 

8800 
Main Help 

8700 
Node Space 

800 
Text Screen 2 

400 
ProDOS 

200 
Logo Data 

0 

There are some specific locations in the two banks that you 
need to know about if you 're writing assembly-language 
programs. Table 18-1 presents these locations. 

Table 18·1. Special Memory Locations 

Information 

Maximum number data files (multiplied by 9) 

Pgint©r tg fir§! ~ag© 9©y9m:l ngg§ §~af© 

Flag for invalid edit buffer 

Location 
Hex Decimal 

300 

1Q 
301 

768 

1§ 
769 

Chapter 18: Special Primitives 

Normal Value 
Hex Decimal 

36 

§7 
0 

54 

1 §8 

0 

I 

I 

I 

• 
·I 

• 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Using Buffer Space 

You can use the edit buffer, graphics buffer, and file buffers for 
your programs if these buffers are not being used by Logo 
while your programs are running. 

The edit buffer and graphics buffer should be used only for 
temporary storage, that is , storage that you need only while 
your assembly code is executing. If you use the edit buffer, 
make sure you mark the flag for indicating invalid contents of 
the edit buffer. If you use the graphics buffer, be sure to clear it 
out when you 're finished to prevent unpredictable graphic 
displays. 

The file buffers can also be used for assembly-language code. 
To make sure that Logo does not use the buffers you are 
using, you must change the number of files that Logo can use 
at the location indicated in Table 18-1. Note that the number 
stored is nine times the number of files Logo will handle. 

If you need 2K bytes for your code, you can change the number 
of files Logo can have open from 54 to 36. Doing this frees file 
buffers 4 and 5 for your use. 

Using Node Space 

You can use node space for assembly-language programs. The 
only time you can reserve the node space is when Logo first 
starts up, no matter when you intend to actually use it. You 
reserve space by changing the address of the end of node 
space shown in Table 18-1. 

When Logo first starts up, node space extends from $800 
to $B6FF; the end being $B6FF. To reserve 8K bytes of node 
space for your use, change the $87 at the location indicated in 
Table 18-1 to $97. You must remember to free up nodes in 
multiples of five bytes (node length). 

.AUXDEPOSIT 

.AUXDEPOSIT foe byte (command) 

The .AUXDEPOSIT command stores the value byte at address 
foe in the auxiliary bank. 

Assembly-Language Primitives 



.AUXEXAMINE 

.AUXEXAMINE foe (operation) 

The .AUXEXAMINE operation outputs the value stored at 
address foe in the auxiliary bank. 

.BLOAD 

.BLOAD pathname foe (command) 

The .BLOAD command loads a binary-format file, consisting of 
data or assembly-language code, into address foe in the main 
bank of memory. 

.BSAVE 

.BSAVE pathname foe integer (command) 

The .BSAVE command copies an area of the main bank of 
computer memory to the file indicated by pathname. The 
memory area transferred starts at foe for integer bytes . 

. CALL 

.CALL foe (command) 

The .CALL command transfers control to the indicated 
machine-language subroutine starting at address foe (decimal) in 
the main bank. An RTS in your subroutine returns control back 
to Logo. 

.DEPOSIT 

.DEPOSIT foe byte (command) 

The .DEPOSIT command writes byte into machine address foe 
(decimal) in main memory. 

Chapter 18: Special Primitives 

I 

I 

II 

II 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

.EXAMINE 

.EXAMINE foe (operation) 

The .EXAMINE operation outputs the contents of machine 
address foe (decimal) in main memory. 

• Special Graphics Primitives 

The special graphics primitives let you review and change the 
aspect ratio, the ratio of lengths of vertical turtle steps to 
horizontal turtle steps. This ratio is set to 0.8 when you start up 
Logo. 

You will want to change this ratio if squares that you draw on 
the screen appear as rectangles, and circles that you draw 
appear as ellipses. 

.SCRUNCH 

.SCRUNCH (operation) 

See also section ".SETSCRUNCH ." The .SCRUNCH operation outputs the aspect ratio, a decimal 
number that is the ratio of the size of a vertical turtle step to 
the size of a horizontal one. The aspect ratio is 0.8 when Logo 
starts up. 

.SETS CRUNCH 

.SETSCRUNCH number (command) 

.SETSCRUNCH sets the aspect ratio to number. The aspect 
ratio is the ratio of the size of a vertical turtle step to the size of 
a horizontal one. If you change the aspect ratio, the value of 
your YCOR is changed so the turtle appears in the same place 
on the screen. 

Special Graphics Primitives 



Example: 

. SETSCRUNCH .5 makes each vertical turtle step half the 
length of a horizontal one . 

. SETSCRUNCH has two uses. First, if squares turn out to be 
rectangles , and circles turn out to be ellipses on your screen , 
you can correct this ; for most screens an aspect ratio of .8 is 
correct. Second , if you want turtle drawings to come out 
squashed or extended , you can use .SETSCRUNCH. For 
example, you can use a circle procedure to draw an ellipse: 

TO CIRCLE :RADIUS 
REPEAT 60 [FD :RADIUS* 3.14159 I 30 RT! 

6] 
END 

TO ELLIPSE :HORIZ :VERT 
.SETSCRUNCH .8 * :VERT I :HORIZ 
CIRCLE :HORIZ 
END 

CIRCLE 25 ELLIPSE 25 40 ELLIPSE 40 25 

Chapter 18: Special Primitives 

I 

• 
I 

• 
I 

I 

I 

I 

• 
I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

II 

I 

I 

I 

I 

I 

I 

• 
I 

I 

I 

I 

• Miscellaneous Primitives 

See Appendix D for more 
information on node space. 

This section describes two miscellaneous primitives, 
.CONTENTS and .QUIT. 

.CONTENTS 

.CONTENTS (operation) 

The .CONTENTS operation outputs a list of all objects that 
Logo knows about. This list includes your variables, procedures, 
and properties, the Logo primitives, most of the things you've 
typed in, and some other words . . CONTENTS can use up a lot 
of node space. 

.QUIT 

.QUIT (command) 

The .QUIT command is a safe way to exit Logo. It ensures that 
all your files are closed and everything else is safe. 

Miscellaneous Primitives 



• 
• 
• 
I 

I 

I 

I 

I 

I 

I 

I 

I 



I 



• Appendix A Messages 

• Appendix B Useful Tools 
255 Graphics Tools 
255 ARCR and ARCL 
256 CIRCLER and CIRCLEL 
256 POLY 
257 Math Tools 
257 ABS 
257 CONVERT 
258 DIVISORP 
258 LOG 
258 LN 
259 PWR 
260 EXP 
260 Program Logic or Debugging Tools 
261 COMMENT 
261 FOREVER 
261 MAP 
261 SORT and SUPERSORT 
262 WHILE 
2ti"' 1 oo1s ror me oung Logo user 
262 DRIVE 
263 TEACH 

Appendixes 

251 

255 

I 

• 
• 
I 

I 

• 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• Appendix C Startup Files 267 
267 Creating a Startup File 
268 A Note of Caution Before You Start 
268 The STARTUP Variable 

• Appendix D Memory Space 271 
271 How Space Is Allocated 
272 Some Hints for Saving Space 

• Appendix E Parsing 275 
275 Delimiters and Spacing 
276 Infix Procedures 
277 Brackets and Parentheses 
277 Quotation Marks and Delimiters 
2 78 The Minus Sign 

• Appendix F ASCII Character Codes 281 

• Appendix G Summary of Logo Primitives 285 

• Appendix H Using a Printer With Logo 299 
300 The Software 
301 The Computer 
302 Serial Interfaces 
302 Parallel Interfaces 
303 The Printer 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



This appendix contains all the error messages you can get 
while using Logo. The words file and name (in lowercase 
letters) in this appendix are replaced with the specific word in 
question when the message is displayed. 

Table A-1. Logo Messages 

Number Message 

1 name IS ALREADY DEFINED 

2 NUMBER TOO BIG 

3 THE DISK WAS SWITCHED 

6 name IS A PRIMITIVE 

7 CAN'T FIND LABEL name 

8 CAN 'T name FROM THE EDITOR 

9 name IS UNDEFINED 

10 name DIDN 'T OUTPUT TO name 

11 I'M HAVING TROUBLE WITH THE DISK-
number 

12 DISK FULL 

13 CAN 'T DIVIDE BY ZERO 

15 FILE file ALREADY EXISTS 

16 FILE file PROTECTED 

17 FILE file NOT FOUND 

18 FILE file WRONG TYPE 

Appendix A: Messages 

X 

Dl 



I 
Table A ·1. Logo Messages (continued) 

Number Message I 19 TOO FEW ITEMS IN name 

20 TOO MANY FILES OPEN 
I 21 CAN'T FIND CATCH FOR name 

23 OUT OF SPACE 
I 24 name CAN 'T BE USED 

25 name IS NOT TRUE OR FALSE 
I 26 PAUSING ... 

27 YOU 'RE AT TOPLEVEL 
I 28 STOPPED! 

29 NOT ENOUGH INPUTS TO name 
I 30 TOO MANY INPUTS TO name 

31 TOO MUCH INSIDE () 's 
I 33 CAN ONLY DO THAT IN A PROCEDURE 

34 TURTLE OUT OF BOUNDS 
I 35 I DON'T KNOW HOW TO name 

36 name HAS NO VALUE 
I 37 UNEXPECTED ')' 

38 YOU DON 'T SAY WHAT TO DO WITH name 
I 40 DISK IS WRITE PROTECTED 

41 name DOESN 'T LIKE name AS INPUT 
I 44 NO FILE SELECTED 

45 FILE file NOT OPEN 
I 46 FILE file ALREADY OPEN 

47 FILE POSITION OUT OF RANGE I · 48 DEVICE UNAVAILABLE 

I 

I 

2521 Appendix A: Messages I 



I 
Table A-1. Logo Messages (continued) 

I 
Number Message 

50 ALREADY DRIBBLING 

I 
52 DEVICE number IN USE 

53 FILE file TOO BIG 

I 
54 VOLUME NOT FOUND FOR file 

55 SUBDIRECTORY NOT FOUND FOR file 

I 
56 SUBDIRECTORY name NOT EMPTY 

!!! LOGO SYSTEM BUG!!! 

I Should not occur. Please write 
to LCSI if it does. 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I Append ix A: Messages 1253 



I 

I 

I 

I 

I 

I 

I 

I 

I 

• 
I 

I 

I 

I 

I 

I 

I 



• 

• Graphics Tools 

See APP.endix A of the Apple Logo 
II : An Introduction to Programming 
manual for other definitions of the 
procedures that draw arcs and 
circles. 

The procedures presented here are for your convenience when 
constructing your own procedures. Some of them were defined 
as examples for primitives and others appear here for the first 

X 

time. f~ese pFaceauFes are aR t~e Laea ais~ iR t~e file feeL§ . 

You can use the procedures in this section to 

• draw an arc that turns in a right or left direction (ARCR and 
ARCL) 

• draw a circle that turns in a riqht or left direction (CIRCLER 
and CIRCLEL) 

• draw a polygon (POLY). 

ARCR and ARCL 

ARCR and ARCL draw right and left turn arcs, respectively. 
Their inputs are 

:RADIUS the radius of the circle from which the arc is 
taken 

:DEGREES the degrees of the arc (the length of the edge) 

Graphic Tools 1255 



TO ARCR :RADIUS :DEGREES 
LOC AL " STEP LOCAL "REM 
MAKE "STEP 2 * :RADIUS * 3. 1416 I 36 
MAKE "R EM REMAINDER :DEGREES 10 
REPEAT :DEGREES I 10 [RT 5 FD :STEP RT 
51 
IF :REM > 0 [ FD :STEP * :REM I 1 0 RT : R! 
EMl 
END 

TO ARCL :RADIUS :DEGREES 
LOCAL "STEP LOCAL "REM 
MAKE "STEP 2 * :RADIUS * 3.1416 I 36 
MAKE "REM REMAINDER :DEGREES 10 
REPEAT :DEGREES I 10 [LT 5 FD :STEP LT 
51 
IF :REM > 0 [ FD :STEP * :REM I 1 0 L T : R! 
EMJ 
END 

CIRCLER and CIRCLEL 

CIRCLER and CIRCLEL draw right and left turn circles with a 
specified radius as input. 

TO CIRCLER :RADIUS 
LOCAL "STEP 
MAKE "STEP 2 * :RADIUS* 3.1416 I 36 
REPEAT 36 [RT 5 FD :STEP RT 51 
END 

TO CIRCLEL :RADIUS 
LOCAL " STEP 
MAKE "STEP 2 * :RADIUS * 3. 1416 I 36 
REPEAT 36 [LT 5 FD :STEP LT 51 
END 

POLY 
POLY draws a polygon over and over. 

TO POLY :SIDE :ANGLE 
FD :SIDE 
RT :ANGLE 
POLY :SIDE :ANGLE 
END 

Appendix B: Useful Tools 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I • Math Tools 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

You can use the procedures in this section to 

• find the absolute value of a number (ABS) 

• change a number from one base to another (CONVERT) 

• find out if one number divides evenly into a second number 
(DIVISORP) 

• calculate the logarithm to the base 10 of a number (LOG) 

• calculate the natural logarithm of a number (LN) 

• find the value of a number to a given power (PWR) 

• use the natural exponential function (EXP). 

ABS 

ABS outputs the absolute value of its input. 

TO ABS :NUM 
OP IF :NUM < 0 [-:NUMl [:NUMl 
END 

CONVERT 

CONVERT converts N, a number, from a base value (:FRBASE) 
to another base value (:TOBASE). 

TO CONVERT :N :FREASE :TOBASE 
OP DEC.TO.ANYBASE ANYBASE.TO.DEC :N :FR! 
BASE 1 : TOBASE 
END 

TO ANYBASE.TO.DEC :N :BASE :POWER 
IF EMPTYP :N [OP OJ 
OP (:POWER * C.TO.N LAST :N> + ANYBASE.! 
TO.DEC BL :N :BASE :POWER * :BASE 
END 

TO DEC.TO.ANYBASE :N :BASE 
IF :N < :BASE [OP N.TO.C :Nl 
OP WORD DEC.TO.ANYBASE INT QUOTIENT :N 
:BASE :BASE N.TO.C REMAINDER :N :BASE 
END 

Math Tools 



TO C.TO.I'I :1'1 

IF I'IUMBERP :1'1 [OP :I'll 
OP <ASCII :1'1> - 55 
END 

TO I'I.TO.C :1'1 

IF :1'1 < 10 [OP :I'll 
OP CHAR 55 + :1'1 

END 

You can then use CONVERT to convert decimal to hexadecimal 
or hexadecimal to decimal. 

TO DECTOHEX :1'1 

OP CONVERT :1'1 10 16 
END 

TO HEXTODEC :1'1 

OP CONVERT :1'1 16 10 
END 

DIVISORP 

DIVISORP indicates (TRUE or FALSE) whether its first input 
divides evenly into its second. 

TO DIVISORP :A :B 
OP 0 = REMAINDER :B :A 
END 

LOG 

LOG returns the logarithm to the base 10 of an input number. It 
uses the LN procedure, which follows. 

TO LOG :X 
OP 0.434294 * Ll'l :X 
END 

LN 

LN calculates the natural logarithm of an input number using all 
the following math procedures as subprocedures. 

TO Ll'l :X 
LOCAL "RLIST 
IF :X < 0 [OP [CAN'T DO LOG OF NEGATIVE! 

I'IUMBERSll 

Appendix B: Useful Tools 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

, I 

I 

I 

I 

IF :X = 1 [ OP 0 l 
IF :X < 1 [MAKE "RLI ST ROOT < 1 I :X> 1 ! 
- 1 l [MAKE "RL I ST ROOT :X 1 1 l 
OP <FIRST BF :RLIST> * <LN1 FIRST :RLIS! 
T> I <LAST :RLIST> 
END 

TO ROOT :X :NPWR :CONST 
IF :X < 1.2 [OP <LIST :X :NPWR :CDNST)l 
DP ROOT (SQRT :X> <2 * : NPWR> : CONST 
END 

TO LN1 :X 
MAKE "X (:X - 1> I <:X +1) 
OP 2 * <:X + <PWR :X 3) I 3 + < PWR :X 
5> I 5> 
END 

PWR 

PWR returns the value of A to the X power. If X is a fraction 
and A is not equal to one, PWR uses the natural functions EXP 
and LN. If A is less then 0 and X is a fraction , the result should 
be a complex number. 

TO PWR :A :X 
IF AND (:A < O> NOT (:X INT :X> [PR <! 
SE :A [TO POWER l :X [IS A COMPLEX NUMBE! 
R!]) STOP] 
IF OR :A = 1 :X INT :X [OP INTPWR :A ! 
:X l 
OP EXP «LN :A> * :X) 
END 

TO INTPWR :A :INTP 
IF DR :A 1 :INTP 0 [OP 1l 
IF :INTP < 0 [OP 1 I PWRLDDP <:A> (-:IN! 
TP>l 
OP PWRLDDP :A :INTP 
END 

TO PWRLOOP :A :INTP 
IF :INTP = 0 [OP 1] 
OP :A* PWRLODP :A :INTP- 1 
END 

Math Tools 



EXP 
EXP is the natural exponential function, calculated using a 
Taylor series. E is declared a local variable to ensure that it 
always contains the correct value. 

TO EXP :X 
LOCAL " E 
MAKE "E 2.71828 
IF <:X - HIT :X> = 0 [OP IIHPWR :E :XJ 
OP CINTPWR :E INT :X> * (1 + EFRAC <:X 
- I NT :X> 1 1> 
END 

I 

I 

I 

I 

I 
TO EFRAC :FRAC :COUNT :TERM I 
IF :COUNT > 9 [OP OJ 
MAKE "TERM :TERM * :FRAC I :COUNT 
OP :TERM + EFRAC :FRAC :COUNT + 1 :TERM I 
END 

Try this: 

?PR PWR 2 3 
8 
?PR PWR 3 2 
9 
?PR PWR 3 0 
1 
?PR LN 50 
3.91201 
?PR LN 2.71828 
0.999998 

• Program Logic or Debugging Tools 

The procedures in this section let you 

• embed comments in a program (COMMENT) 

• repeat a group of instructions until you halt them (FOREVER) 

• apply a command to every element of a list (MAP) 

• sort a list of words and arrange them in a flat list (SORT and 
SUPERSORT) 

• repeat a group of instructions until a specific condition 
becomes false (WHILE). 

Appendix B: Useful Tools 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

COMMENT 

COMMENT allows you to embed comments in your programs in 
the form : 

; [THIS IS A COMMENT] 

TO ; :COMMENT 
END 

FOREVER 

FOREVER repeats a group of instructions until you press 
(ill-( ESC ) or turn off the power. 

TO FOREVER :INSTRUCTIONLIST 
RUN :INSTRUCTIONLIST 
FOREVER :INSTRUCTIONLIST 
END 

MAP 

MAP applies a command to every element of a list. 

TO MAP :CMD :LIST 
IF EMPTYP :LIST [STOPl 
RUN LIST : CMD WORD "" FIRST :LIST 
MAP :CMD BF :LIST 
END 

SORT 

SORT takes a list of words and outputs them alphabetically. 

TO SORT :ARG :LIST 
IF EMPTYP :ARG [OP :LISTl 
MAKE "LIST INSERT FIRST :ARG :LIST 
OP SORT BF :ARG :LIST 
END 

TO INSERT :A :L 
IF EMPTYP :L [OP ( LIST :A )] 
IF BEFOREP :A FIRST :L [OP FPUT :A :Ll 
OP FPUT FIRST :L INSERT :A BF :L 
END 

Program Logic or Debugging Tools 



Try this: 

MAKE "SORTLI ST SORT [A D E F T C Zl [ l 

PR :SORTLIST 
A C D E F T Z 

Then type 

MAKE "SORTLI ST SORT [ FOO BAR BAZ l :SORT! 
LIST 
PR :SORTLIST 
A BAR BAZ C D E F FOO T Z 

WHILE 

WHILE repeats a group of instructions until :CONDITION 
becomes false. 

TO WHILE :CONDITION :INSTRUCTIONLIST 
TEST RUN :CONDITION 
IFFALSE [STOPl 
RUN :INSTRUCTIONLIST 
WHILE :CONDITION :INSTRUCTIONLIST 
END 

• Tools for the Young Logo User 

You can use the procedures in this section to 

• drive the turtle around the screen with the touch of a key 
(DRIVE) 

• define a procedure as you are running it line by line 
(TEACH). 

DRIVE 

DRIVE lets you drive the turtle around the screen with the touch 
of a key. This is an example of single-keypress interactive 
programming. 

TO DRIVE 
IF KEYP [LISTEN] 
FD 1 
DRIVE 
END 

Appendix B: Useful Tools 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 
I 

I 

I • 
I 

I 

I 

I 

TO LISTEN 
MAKE "ANS RC 
IF : ANS 
IF : ANS 
IF : ANS 
END 

TEACH 

"S [THROW "TOPLEVELJ 
"R [RT 10] 
"L [LT 10] 

TEACH lets you define a procedure as you are running it line by 
line. By typing END, you finish defining the procedure. Entering 
ERASE remsves the orevious line from the definition in 
c.KH~c. rem ve::. u1e !Jre 1uu::. 11r1e num me uem ruurr 111 

progress. This is especially useful when working with young 
children . 

TO TEACH 
LOCAL "THISLINE 
DEFINE "PROGRAM [[]] 
CLEARSCREEN 
GETLINES 
NAME IT 
END 
END 

TO GETLINES 
TYPE "?? 
MAKE "TH I SLI NE READLI ST 
IF :THISLINE = [ENDJ [STOPJ 
IF :THISLINE = [ERASEJ [WIPEOUT] [IF CFI! 
RST : TH I SL I NE> = "TO [ J [ RUNSTORE J J 
GETLINES 
END 

TO WIPEOUT 
DEFINE "PROGRAM BUTLAST TEXT "PROGRAM 
CLEARSCREEN 
RUN [PROGRAM] 
END 

TO RUNSTORE 
CATCH "ERROR [RUN :THISLINE STORE STOP] 
PRINT FIRST BUTFIRST ERROR 
END 

Tools for the Young Logo User 



TO STORE 
DEFINE "PROGRAM LPUT :THISLINE TEXT "PR! 
OGRAM 
END 

TO NAMEIT 
LOCAL "NAME 
PRINT [WHAT SHOULD I CALL THIS?J 
MAKE "NAME READLIST 
IF EMPTYP :NAME [ERASE "PROGRAM STOPJ 
IF DEFINEDP FIRST :NAME [TRYAGAINJ [COP! 
YJ 
END 

TO TRYAGAIN 
PRINT SENTENCE FIRST :NAME [IS ALREADY 
DEFINED.] 
PRINT [] 
NAME IT 
END 

TO COPY 
DEFINE FIRST :NAME TEXT "PROGRAM 
PRINT SENTENCE FIRST :NAME [DEFINED] 
ERASE "PROGRAM 
END 

Appendix B: Useful Tools 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I~ 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

X 

(") 

This appendix describes the feature of Logo that lets you 
automatically load a file into your workspace when you start up 
Logo. You must call the file STARTUP. There can be only one 
file with the name STARTUP, although it can include commands 
to load other files. The disk with the STARTUP file must be in 
drive 1 when you press (RETURN) from the title display. 

• Creating a Startup File 

Before placing a procedure in the STARTUP file, you must first 
enter the procedure into your workspace. You do so either by 
typing procedures in or by loading them from another file. For 
instance, you might want to transfer something from the TOOLS 
file into the new STARTUP file. To check your workspace, type 
POTS. 

You see the list of procedures that you just added, whether by 
keyboard entry or from another file, and the procedures that 
were previously in your workspace. At this point, you can save 
the new file with the name STARTUP. 

However, if some procedures are buried when a file is loaded, 
POTS does not show you their names, and you can't save or 
erase them. The reason for this is that the global workspace 
commands SAVE, ERALL, and ERPS don't erase buried 
procedures (that's the reason for burying them!). To use the 
ERALL, ERPS, or SAVE command successfully on buried 
procedures, they must first be unburied. 

Creating a Startup File 



To see all the procedure names, including any buried 
procedures, type 

UNBURYALL 
POTS 

Erasing these procedures is the same as erasing others: just 
specify the procedure names in a list following the ERASE 
command. Saving them individually onto a disk is similar: just 
put the names you want to save in a list for the SAVEL 
command . Only those procedures will be saved, regardless of 
whether they 're buried or not. However, all the unburied names 
will also be saved, so check the names in your workspace with 
PONS before using SAVEL. 

A Note of Caution Before You Start 

If you already have a STARTUP file and you are about to create 
a new one to use in its place, you run the risk of losing useful 
procedures. Even if you want to do this, you might like the old 
procedures back some time (when a newcomer is trying Logo, 
for example). 

So, before proceeding, you may want to save your old 
STARTUP file on a disk by giving it the name OLDSTARTUP or 
something like that. To change the name of any file, use the 
RENAME command. In this case, type 

RENAME "STARTUP "OLDSTARTUP 

Having done that, type 

SAVE "STARTUP 

All the procedures you just saved will be loaded in your 
computer and will be ready to use after you press (RETURN) 

from the title display. 

The STARTUP Variable 

Logo has a special variable named STARTUP. Any file , 
including the STARTUP file, can contain a STARTUP variable. 
The first thing Logo does after loading a STARTUP file is to 
look for the STARTUP variable. If one exists, Logo runs the 
contents of the variable. The contents of the STARTUP variable 
must be a list. 

Appendix C: Startup Files 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

If you load your STARTUP file in your workspace, type 

MAKE "STARTUP [PR [GOOD MORNING]] 

Logo saves the STARTUP variable and its contents when you 
tell it to save your new STARTUP file. Then, whenever you start 
up Logo, your computer will greet you with GOOD MORNING 
before saying WELCOME TO LOGO. 

It's easier to use the EDITFILE command to edit a file and add 
a variable such as STARTUP. To add a STARTUP variable to a 
STARTUP file this way, type 

EDITFILE "STARTUP 

The entire file contents will appear in the Logo Editor. Move to 
the bottom of the file (where the variables are stored) and add a 
line like this: 

MAKE "STARTUP [WELCOME] 

Then move the cursor back up into the area where procedures 
are stored, begin a new line, and type something like this: 

TO WELCOME 
LOCAL "ANSWER 
PR [Hello again, Eric!] 
TYPE [How are you today?] 
MAKE "ANSWER RW 
IF MEMBERP :ANSWER [FINE OK GREAT] [PR ! 
[1 1 m happy to hear that] STOP] 
PR [Well, let 1 s hope Logo-ing will help! 
] 

END 

To summarize, Logo looks for a file called STARTUP on the 
disk in drive 1. If Logo finds the file , Logo loads it and then 
looks for a variable called STARTUP. If the variable exists, 
Logo runs its contents. 

Creating a Startup File 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

·I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

>< 
Q. 

Logo procedures and variables take up space; more space is 
used when the procedures are run. This appendix tells you how 
Logo allocates memory space and how you can use less of that 
space. 

In general, you need not worry about saving space. Instead you 
should try to write procedures as clearly and elegantly as 
possible. However, we recognize that Apple Logo has only a 
finite memory. For this reason, you might want to know how 
Logo manages its memory space. 

• How Space Is Allocated 

Logo allocates space in nodes, each of which is five bytes 
long. All Logo objects and procedures are built out of nodes. 
Every Logo word used is stored only once: all occurrences of 
that word are actually pointers to the word. 

Logo allocates nodes in this way: 

• A literal word takes up one node for every two characters. 

• A variable name and a procedure name each take up three 
nodes plus the size of the name. 

• A property list takes up three nodes plus two nodes for each 
property plus the size of the property list itself. 

• A number, whether integer or decimal, takes up one node. 

• A list takes up one node for each element plus the size of 
the element itself. 

How Space Is Allocated 



For a description of the RECYCLE 
command , see Chapter 14. 

The internal workings of Logo also use nodes. The interpreter 
knows about certain free nodes that are available for use. When 
there are no more free nodes, a special part of Logo called the 
garbage collector looks through all the nodes and reclaims any 
nodes that are not being used. 

Example: 

MAKE "NUMBER 7 
MAKE "NUMBER 90 

When Logo executes MAKE "NUMBER 7, it assigns NUMBER 
to one node, which hold the value 7. After executing MAKE 
"NUMBER 90, Logo can reuse the nodes containing the 7. 
Logo will reclaim those nodes as free nodes the next time the 
garbage collector runs. The garbage collector runs automatically 
when necessary, but you can make it run with the Logo 
command RECYCLE. 

The operation NODES outputs the number of free nodes; 
however, if you really want to find out how much space you 
have, you should do something like the following: 

RECYCLE PRINT NODES 
1259 

• Some Hints for Saving Space 

If you find that you are running out of space, you might want to 
rewrite your program so that it uses less space. Consider these 
programming tips: 

• Use procedures to replace repetitive sections of the 
program. 

• Avoid creating new words. To save space, you can use the 
names of inputs of one procedure as the names of inputs of 
other procedures. You can also use the names of 
procedures and primitives as variable names. 

• Remember that it is bad form to try to save space by using 
short or obscure words in your procedures. Doing so may 
save space, but it makes the procedures less readable. 

Appendix D: Memory Space 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 
I 

I 

I 

I 

-
I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Ill 

"0 

"0 

CD 

::J 

a. 

X 

CD 

This appendix will help you understand how Logo parses lines. 
Parsing works like this: when you type a line in Logo, Logo 
recognizes the characters as words and lists, and builds a list 
that is Logo's internal representation of the line. To see the 
parsing effect, type the line in a procedure definition with the 
command TO and use the Logo Editor to see the result. 

• Delimiters and Spacing 

A word is usually delimited by spaces. This means that there is 
a space before the word and a space after the word ; they set 
the word off from the rest of the line. There are more delimiting 
characters besides the space: 

[]() =<>+ -* 

You need not type a space between a word and any of these 
characters . For example, to find out how this line is parsed: 

IF 1<2[PRINT<3+4)*5l[PRINT :X+6l 

type 

?TO TESTIT 
>IF 1<2[PRINT<3+4)*5l[PRINT :X+6l 
>END 

?ED "TESTIT 

Delimiters and Spacing 



• Infix Procedures 

The screen will look like this: 

LOGO EDITOR 
===== ========•==mz=••=====• = ==•== • == === = 

TO TESTIT 
IF 1 < 2 [PRI NT < 3 + 4 > * SJ [PRINT :! 
X + 6J 
END 

6-A accep t , 6-? help , a- ESC cancel 

To treat any of the characters mentioned above as a normal 
alphabetic character, put a backslash (\) before it. For example: 

?PRINT "GOOD\-BYE 
GOOD-BYE 
?PRINT "SAN\ FRANCISCO 
SAN FRANCISCO 

The following characters are the names of infix procedures. You 
write the name between the two inputs, but Logo considers the 
procedures to have two inputs. 

+ - */= <> 

Appendix E: Parsing 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• Brackets and Parentheses 

The left bracket ([) and right bracket (]) characters indicate the 
start and end of a list or sublist. 

Parentheses group things in ways Logo ordinarily would not, 
and vary the number of inputs for certain primitives. 

If you reach the end of a Logo line-that is, you press 
(RETURN )-and brackets or parentheses are still open, Logo 
closes all sublists or expressions. For example: 

?REPEAT 4 [ PR IN T [T HIS [I S [ A [ TEST 
THIS [IS [ A [T ES Tl 
THIS [ IS [ A [ TESTl 
THIS [I S [A [TESTl 
THIS [ I S [A [TESTl 

If Logo fi nds a right bracket for which there was no 
corresponding left bracket, Logo stops execution of the rest of 
the line or procedure. For example: 

? lPR I NT "ABC 
? 

• Quotation Marks and Delimiters 

Normally, you have to put a backslash ( \ ) before the characters 
[, ], (, ), +, -, •, =, < , > , and \ itself. But the first character 
after a quotation mark (") does not need to have a backslash 
preceding it. For example: 

?PRINT "* 
* 

Quotation Marks and Delimiters 



• The Minus Sign 

If a delimiter occupies any position but the first one after the 
quotation mark, it must have a backslash preceding it. For 
example: 

?PRINT "**** 
NOT ENOUGH INPUTS TO * 
The only exception to the above general rule is brackets ([ ]). If 
you want to put a quotation mark before a bracket, you must 
always include a backslash between the quotation mark and the 
bracket. For example: 

?PRINT 11
[ 

YOU DON'T SAY WHAT TO DO WITH [ l 
?PRINT "\[ 
[ 

The way in which Logo parses the minus sign (-) is an unusual 
case. The problem here is that the minus sign character is used 
to represent three different things: 

• part of a number, to indicate that it is negative, as in -3 

• a procedure of one input, called unary minus, which outputs 
the additive inverse of its input, as in -XCOR or -:DISTANCE 

• a procedure of two inputs, which outputs the difference 
between its first input and its second, as in 7 - 3 and 
XCOR- YCOR. 

The parser tries to be clever about this potential ambiguity and 
figures out which of the three uses is meant, using the following 
rules: 

1. If the minus sign immediately precedes a number, and 
follows any delimiter (including a space) except right 
parenthesis, Logo parses the number as a negative number. 
This allows the following behavior: 

PRINT 3 * -1 

PRINT 3*-4 

FIRST [- 3 41 

FIRST [-3 41 

Appendix E: Parsing 

parses as 3 times negative 1 

parses as 3 times negative 4 

outputs -

outputs -3 

I 

I 

I 

I 

I 

• 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

2. If the minus sign is preceded by a numeric expression , it 
works like an infix procedure. For example: 

PR 3-4 is -1 

PR XCOR - YCDR 

The following are interpreted the same: 

MAKE "A SE XCDR - YCDR 3 

MAKE "A SE XCDR -YCDR 3 

MAKE "A SE XCDR-YCDR 3 

3. If the minus sign is not preceded by a numeric expression, it 
works like a unary minus. For example: 

PR -XCDR 

PR -(3+4) 

The Minus Sign 



I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

This appendix contains a chart of American Standard Code for 
Information Interchange (ASCII) code values (in decimal) for all 
characters in Logo. Note that characters can be 

• normal (white characters on black background) 

• inverse video (black characters on white background). 

Table F-1 shows the ASCII codes for normal characters; 
Table F-2 shows the ASCII codes for characters in inverse 
video. 

To change a normal character to inverse, use the following 
procedure: 

TO INVERSE :CHAR 
IF (ASCII :CHAR>> 127 [OP :CHARJ 
IF OR (ASCII :CHAR>< 64 AND (ASCII :CHAR! 
> > 96 (ASCII :CHAR>< 128 [OP CHAR 128 +! 

ASCI I :CHAR l [ OP CHAR 64 + ASCI I :CHAR l 
END 

Appendix F: ASCII Character Codes 

>< 



I 
Table F-1. ASCII Codes for Normal Characters 

ASCII char ASCII char ASCII char ASCII char I code code code code 

0 @ 32 SPACE 64 @ 96 
I 1 A 33 65 A 97 a 

2 B 34 66 B 98 b 
3 c 35 # 67 c 99 c 

I 4 D 36 $ 68 D 100 d 
5 E 37 o/o 69 E 101 e 
6 F 38 & 70 F 102 f 

I 7 G 39 71 G 103 9 
8 H 40 72 H 104 h 
9 I 41 73 I 105 
10 J 42 74 J 106 j I 
11 K 43 + 75 K 107 k 
12 L 44 76 L 108 
13 RETURN 45 77 M 109 m I 
14 N 46 78 N 110 n 
15 0 47 I 79 0 111 0 

16 p 48 0 80 p 112 p I rr e 4§ ~ §~ e 11§ q 
18 R 50 2 82 R 114 r 
19 s 51 3 83 s 115 s I 
20 T 52 4 84 T 116 t 
21 u 53 5 85 u 117 u 
22 v 54 6 86 v 118 v I 
23 w 55 7 87 w 119 w 
24 X 56 8 88 X 120 X 

25 y 57 9 89 y 121 y I 
26 z 58 90 z 122 z 
27 [ 59 91 [ 123 { 
28 \ 60 { 92 \ 124 ' I 
29 ] 61 = 93 ] 125 } 
30 /\ 62 } 94 /\. 126 ...... 

31 63 ? 95 127 Blot I 

I 

I 

I 

2821 Appendix F: ASCII Character Codes I 



I 
Table F-2. ASCII Codes of Inverse Characters 

I ASCII char ASCII char ASCII Mouse ASCII char 
code code code Text code 

128 @ 160 SPACE 192 • 224 

I 129 A 161 193 0 225 a 
130 8 162 194 ~ 226 b 
131 c 163 # 195 X 227 c 

I 132 D 164 $ 196 v 228 d 
133 E 165 0/o 197 ~ 229 e 
134 F 166 & 198 ~ 230 f 

I 135 G 167 199 - 231 ..._ g 
136 H 168 200 f- 232 h 
137 I 169 201 233 

I 138 J 170 202 ~ 234 j 
139 K 171 + 203 1' 235 k 
140 L 172 204 236 

I 141 M 173 205 .-1 237 m 
142 N 174 206 I 238 n 
143 0 175 I 207 ~ 239 0 

I 144 p 176 0 208 :f 240 p 
145 Q 177 1 209 +: 241 q 
146 R 178 2 210 .....: 242 r I 

I 147 s 179 3 211 243 s 
148 T 180 4 212 L 244 t 
149 u 181 5 213 -7 245 u 

I 150 v 182 6 214 • 246 v 
151 w 183 7 215 • 247 w 
152 X 184 8 216 c 248 X 

I 153 y 185 9 217 ::. 249 y 
154 z 186 218 I 250 z 
155 [ 167 219 • 251 { 

I 156 \ 188 { 220 252 
' 

157 l 189 221 
..IL 

253 } ,I"' 

158 A 190 } 222 :!] 254 ...... 

I 159 191 ? 223 I 255 Blot 

I 

I 

I 

I Appendix F: ASCII Character Codes 1283 



O:b 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Ol 

"0 

"0 

co 

a. 

X 

(Q 

Parentheses around an input indicate that the input is optional. 
A number sign (#) indicates a procedure that can take any 
number of inputs; if you give it other than the number indicated, 
you must enclose the entire expression in parentheses. 

ALLOPEN 

#AND pred1 pred2 

ARCTAN number 

ASCII char 

. AUXDEPOSIT foe byte 

.AUXEXAMINE foe 

BACK, BK distance 

BACKGROUND,BG 

BEFOREP word1 word2 

.BLOAD pathname foe 

Outputs a list of the files that 
are currently open. 

Outputs TRUE if all of its 
inputs are TRUE. 

Outputs the arctangent of 
number in degrees. 

Outputs the ASCII code for 
the character char . 

Stores the value byte at 
address foe in the auxiliary 
bank. 

Outputs the value stored at foe 
in the auxiliary bank. 

Moves the turtle distance 
steps back. 

Outputs a number 
representing the background 
color. 

Outputs TRUE if word1 comes 
before word2 according to the 
ASCII code. 

Loads an assembly-language 
file into memory at foe. 

Appendix G: Summary of Logo Primitives 



I 
.BSAVE pathname toe integer Saves memory region (starting 

at toe for integer bytes) into 

I the file indicated by pathname. 

BURY name(list) Buries all procedures 
contained in name(lis~. I 

BURY ALL Buries all procedures and 
variables contained in the 

I workspace. 

BURYNAME name(lis~ Buries the variable name(s) 
contained in the name(lis~ . I 

BUTFIRST, BF obj Outputs all but the first 
element of its input. 

I BUTLAST, BL obj Outputs all but the last 
element of its input. 

BUTTONP paddlenumber Outputs TRUE if the button on I 
the indicated paddle is down, 
FALSE if it is up. 

I .CALL toe Calls the machine-language 
subroutine at address toe. 

CATALOG Displays the names of files in 
the current directory and the 
number of blocks used by 
each. 

CATCH name list Runs list, returns when 
THROW name is run. 

CHAR integer Outputs the character whose 
ASCII code is integer. 

CLEAN Erases the graphics screen 
without affecting the turtle. 

CLEARSCREEN, CS Erases the screen, moves the 
turtle to [0 0] , and sets the 
heading to 0. 

CLEARTEXT, CT Clears the text portion of the 
screen. 

CLOSE file Closes a currently opened file 
or device. 

Appendix G: Summary of Logo Primitives I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

CLOSEALL 

co 

.CONTENTS 

COPYDEF name newname 

COS degrees 

COUNT obj 

CREATEDIR pathname 

CURSOR 

DEFINE name list 

DEFINEDP word 

.DEPOSIT foe byte 

DIFFERENCE number1 
number2 

DOT [ xeor year] 

DOTP [xeor year] 

DRIBBLE file 

EDIT, ED (name(list)) 

Closes all currently opened 
files and devices. 

Resumes a procedure after a 
pause. 

Outputs a list of all names, 
procedure names, and other 
words in the workspace. 

Copies the definition of name 
onto newname. 

Outputs the cosine of degrees. 

Outputs the number of 
elements in its input. 

Creates a subdirectory named 
by the last element of 
pathname. 

Outputs the position of the 
cursor. 

Makes list the definition of 
name. 

Outputs TRUE if word is the 
name of a procedure. 

Stores the value byte at 
address foe. 

Outputs number2 subtracted 
from number1 . 

Puts a dot at the specified 
coordinates . 

Outputs TRUE if there is a dot 
on the screen at the specified 
coordinates. 

Sends a copy of whatever text 
is printed on the screen to the 
specified file or device. 

Starts the Logo Editor 
(containing the named 
procedure(s)). 

Appendix G: Summary of Logo Primitives 



I 
EOITFI LE pathname Starts the Logo Editor with the 

contents of the file indicated I by pathname. 

EON name(Jist) Starts the Logo Editor 

I containing the named 
variable(s) . 

EONS Starts the Logo Editor I containing all variables in the 
workspace. 

EMPTYP obj Outputs TRUE if obj is the I 
empty list or the empty word. 

EQUALP obj1 obj2 Outputs TRUE if its inputs are I equal. 

ERALL Erases everything in the 
workspace. I 

ERASE, ER name(Jist) Erases the named 
procedure(s). I 

ERASEFILE, ERF pathname Erases the file indicated by 
pathname from the disk. 

I ERN name(Jist) Erases the named variable(s). 

ERNS Erases the variables in the 
workspace. I 

ERPROPS Erases all properties from the 
workspace. I 

ERPS Erases all the procedures in 
th§ wgr~§~aS@: 

ERROR Outputs a four-element list of I 
information about the most 
recent error. I 

.EXAMINE Joe Outputs the byte stored at 
address Joe. 

FENCE Fences the turtle within the I 
edges of the screen. 

FILELEN pathname Outputs the length in bytes of 'I 
the file indicated by pathname. 

FILEP pathname Outputs TRUE if the file 
I indicated exists. 

2881 Appendix G: Summary of Logo Primitives 



I 
FILL Fills the shape enclosing the 

I turtle with the current pen 
color. If the turtle is not 
enclosed, the background is 

I filled. 

FIRST obj Outputs the first element of its 
input. 

I FORM number field precision Outputs number in field 
spaces with precision digits 

I 
after the decimal point. 

FORWARD, FD distance Moves the turtle distance 
steps forward. 

I FPUT obj list Outputs a list formed by 
putting its first input in front of 

I 
list. 

FULLSCREEN, FS Devotes the entire screen to 
graphics. Same as 

I ( CONTROL )-OJ. 

GO word Transfers control to LABEL 

I 
word. 

GPROP name prop Outputs prop property of 
name. 

I HEADING Outputs the turtle 's heading 
(its direction) in degrees. 

I HELP word Prints the inputs for the 
primitive or procedure 
indicated. 

I HIDETURTLE, HT Makes the turtle invisible. 

HOME Moves the turtle to [0 0] and 

I sets the heading to 0. 

IF pred list1 (list2) If pred is TRUE, runs list1; 

I 
otherwise, runs list2. 

IFFALSE, IFF list Runs list if the most recent 
TEST was FALSE. If no test 

I has been made, the list is not 
run . 

I 

I Appendix G: Summary of Logo Primitives 1289 



I 
IFTRUE, 1FT list Runs list if the most recent 

TEST was TRUE. If no test 

I has been made, the list is not 
run. 

INT number Outputs the integer portion of I number. 

INTQUOTIENT integer! Outputs integer! divided by 

I integer2 integer2, truncated to an 
integer. 

ITEM integer obj Outputs the element whose I position in obj is integer. 

KEYP Outputs TRUE if a key has 

I been pressed but not yet read. 

LABEL word Creates a labeled line for use 
by GO. I 

LAST obj Outputs the last element of its 
input. 

I LEFT, LT degrees Turns the turtle degrees left 
(counterclockwise). 

#LIST obj1 obj2 Outputs a list of its inputs, I 
preserving their list structure. 

LISTP obj Outputs TRUE if obj is a list. I 
LOAD pathname Loads the file indicated into 

the workspace. 

I LOADHELP pathname Loads the file named into the 
helpscreen area of memory so 
it will appear when [QJ-GJ is I pressed. 

LOADPIC pathname Loads the screen image in the 

I file indicated directly onto the 
screen . 

LOCAL name(list) Makes name(list) local. I 
LOWERCASE word Outputs word in all lowercase 

letters. 

LPUT obj list Outputs a list formed by 
putting its first input after list. 

MAKE name obj Gives the value obj to the 
variable name. 

2901 Appendix G: Summary of Logo Primitives 



I 
MEMBER obj1 obj2 Outputs the part of obj2 that 

I 
starts with obj1. 

MEMBERP obj1 obj2 Outputs TRUE if its first input 
is an element of its second 

I input. 

NAME obj name Makes obj the value of name. 

I NAMEP word Outputs TRUE if word has a 
value. 

I 
NODES Outputs the number of free 

nodes. 

NODRIBBLE Closes a dribble file. 

I NOT pred Outputs TRUE if pred is 
FALSE. 

I NUMBERP obj Outputs TRUE if obj is a 
number. 

ONLINE Lists the disk volumes on line. 

I OPEN file Opens file so it can send or 
receive characters . 

I #OR pred1 pred2 Outputs TRUE if any of its 
inputs are TRUE. 

I OUTPUT, OP obj Returns control to the calling 
procedure, with obj as output. 

I 
PADDLE paddlenumber Outputs the rotation of the dial 

on the indicated paddle. 

PARSE word Outputs a list obtained from 

I parsing word. 

PAUSE Makes a procedure pause. 

I PEN Outputs the pen state (PO, 
PU , PE, PX). 

I 
PENCOLOR , PC Outputs a number 

representing the pen color. 

PENDOWN , PO Puts the pen down. 

I PENERASE, PE Puts the eraser down. 

PENREVERSE, PX Puts the reversing pen down. 

I 

I Appendix G: Summary of Logo Primitives 1291 



PENUP, PU 

PLIST name 

PO name(lis~ 

PO ALL 

POFILE pathname 

PON name(lis~ 

PONS 

POPS 

POS 

POT name(lis~ 

POTS 

PPROP name prop obj 

PPS 

PREFIX 

PRIMITIVEP word 

Raises the pen. 

Outputs the property list of 
name. 

Prints definitions of the named 
procedure(s). 

Prints definitions of all 
procedures and variables in 
the workspace. 

Prints out the contents of the 
file indicated. 

Prints the name(s) and value(s) 
of the variable(s) listed. 

Prints the names and values 
of all unburied variables in the 
workspace. 

Prints definitions of all 
unburied procedures in the 
workspace. 

Outputs the position of the 
turtle in coordinates. 

Prints the title line(s) of the 
named procedure(s) . 

Prints the title lines of all 
unburied procedures in the 
workspace. 

Gives name the property prop 
with the value obj. 

Prints property list(s) of 
everything in the workspace. 

Outputs the current ProDOS 
prefix, most recently set with 
SETPREFIX. 

Outputs TRUE if word is a 
primitive. 

Appendix G: Summary of Logo Primitives 



I 
I 

#PRINT, PR obj Prints its input followed by a 

I 
carriage return and linefeed 
(strips off the outer brackets 
of lists). 

I PRINTPIC integer Prints the graphics screen to 
the printer in integer slot or 
port. 

I #PRODUCT number1 Outputs the product of its 
number2 inputs. 

I .QUIT Quits Logo and releases 
control to ProDOS. 

I 
QUOTIENT number1 number2 Outputs number1 divided by 

number2. The result is a 
decimal number. 

I RANDOM integer Outputs a random 
non-negative integer less than 
integer. 

I READCHAR, RC Outputs the character read 
from the current file or device 

I 
(default is the keyboard). 
Waits for input, if necessary. 

READCHARS, RCS integer Outputs integer characters 

I read from the current file or 
device (default is the 
keyboard) . Waits for input, if 

I necessary. 

READER Outputs the current file 

I 
opened for reading . 

READLIST, RL Outputs the line read from the 
current file or device (default 

I is the keyboard). Waits for 
input, if necessary. 

I 
READPOS Outputs the file position of the 

current file being read. 

READWORD, RW Outputs the line read by the 

I current device (default is the 
keyboard) after a carriage 
return. 

I RECYCLE Performs a garbage collection. 

I Appendix G: Summary of Logo Primitives 1293 



I 
REMAINDER integer1 integer2 Outputs the remainder of 

integer1 divided by integer2. 

I REMPROP name prop Removes property prop from 
the property list of name. 

RENAME pathname Renames pathname to I 
newpathname newpathname (both files must 

be closed). 

I REPEAT integer list Runs list integer times. 

RERANDOM Makes RANDOM behave 

I reproducibly. 

RIGHT, RT degrees Turns the turtle degrees right 
(clockwise). I 

ROUND number Outputs number rounded off 
to the nearest integer. 

I RUN list Runs list; outputs what list 
outputs. 

SAVE path name Writes the whole workspace I 
onto the file indicated by 
path name. 

I SAVEL name(list) pathname Saves the named procedures 
and any unburied variables in 
the indicated file. I 

SAVEPIC pathname Saves the picture on the 
screen in the file indicated. 

.SCRUNCH Outputs the current aspect I 
ratio of the screen. 

#SENTENCE, SE obj1 obj2 Outputs a list of its inputs. I 
SETBG colornumber Sets the background to the 

color represented by I colornumber. 

SETCURSOR [column Puts the cursor at the position 

I linenum] specified by [column linenum]. 

SETHEADING, SETH degrees Sets the turtle's heading to 
degrees. I 

SETPC colornumber Sets the pen color to 
colornumber. 

I 

2941 Appendix G: Summary of Logo Primitives I 



I 
SETPOS [xear year] Moves the turtle to the 

I 
coordinates specified . 

SETPREFIX pathname Sets the ProDOS prefix . 

I 
SETREAD file Sets the file from which the 

output of RC, RCS, RL, and 
RW will be read. 

I SETREADPOS integer Sets the file position for 
reading the current file . 

I 
.SETSCRUNCH number Sets the aspect ratio of the 

screen to number. 

SETWIDTH width Sets the screen width to 

I width, either 40 or 
80 columns. 

I 
SETWRITE file Sets the destination of inputs 

to PRINT, TYPE, SHOW. 

SETWRITEPOS integer Sets the file position for 

I writing into the current file . 

SETX xear Moves the turtle horizontally 
so that the x-coordinate is 

I xear. 

SETY year Moves the turtle vertically so 

I that the y-coordinate is year. 

SHOW abj Prints its input followed by a 

I 
carriage return (with brackets 
for lists). 

SHOWNP Outputs TRUE if the turtle is 

I shown. 

SHOWTURTLE, ST Makes the turtle visible. 

I SIN degrees Outputs the sine of degrees. 

SPLITSCREEN, SS Allows text and graphics on 
the same screen. Same as 

I ( CONTROL )-{]). 

SORT number Outputs the square root of 

I number. 

STEP name(list) Causes the procedure(s) to 
execute one line at a time. 

I 

I Appendix G: Summary of Logo Primitives 1295 



STOP 

#SUM number1 number2 

TEST pred 

TEXT name 

TEXTSCREEN, TS 

THING name 

THROW name 

TO name (inputs) 

TOOT frequency duration 

TOWARDS [xcor year] 

TRACE name(/ist) 

#TYPE obj 

UNBURY name(list) 

UNBURYALL 

UNBURYNAME name(/ist) 

UNSTEP name(list) 

UNTRACE name(list) 

UPPERCASE word 

Stops the procedure and 
returns control to the caller. 

Outputs the sum of its inputs. 

Determines whether pred is 
TRUE or FALSE. 

Outputs the definition of 
procedure name as a list. 

Devotes the entire screen to 
text. Same as (CONTROL )-OJ. 

Outputs the value of name. 

Transfers control to the 
corresponding CATCH. 

Begins the definition of name. 

Produces a sound of 
frequency for duration. 

Outputs the heading the turtle 
would have if facing the 
coordinates specified. 

Causes tracing information to 
be printed for traced 
procedure(s). 

Prints its input (strips off the 
outer brackets of lists). 

Unburies the procedure(s) in 
name( list). 

Unburies all the procedures 
and variables buried in the 
workspace. 

Unburies the variable name(s) 
in name(list). 

Ends the stepping of named 
procedure(s). 

Ends the tracing of named 
procedure(s). 

Outputs word in all uppercase 
letters. 

Appendix G: Summary of Logo Primitives 



I 
WAIT integer Pauses for approximately 

I 
integer 60ths of a second. 

WIDTH Gives the current setting of 
the screen width, either 40 or 

I 80 characters wide. 

WINDOW Makes the turtle field 
unbounded. 

I #WORD word1 word2 Outputs a word made up of its 
inputs. 

I WORDP obj Outputs TRUE if obj is a word. 

WRAP Makes the turtle field wrap 

I around the edges of the 
screen. 

WRITEPOS Outputs the file position of the 

I current file being written to. 

WRITER Outputs the current file open 

I for writing. 

XCOR Outputs the x-coordinate of 
the turtle. 

I YCOR Outputs the y-coordinate of 
the turtle. 

I number1 + number2 Outputs number1 plus 
number2. 

I number1 - number2 Outputs number1 minus 
number2. 

number1 * number2 Outputs number1 times 

I number2. 

number1 I number2 Outputs number1 divided by 

I number2. 

number1 < number2 Outputs TRUE if number1 is 
less than number2. 

I obj1 = obj2 Outputs TRUE if obj1 is equal 
to obj2. 

I number1 > number2 Outputs TRUE if number1 is 
greater than number2. 

I 

I Appendix G: Summary of Logo Primitives 1297 



I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

•• 
·' I 

Here are some notes to help you get your printer working 
properly with Logo. If you are successfully using your printer 
from Logo, then you don 't need to read any further. 

If you are having printing problems, there are generally only 
three areas that you need to check to identify and correct the 
problem: 

• the software-your program 

• the computer's configuration, including its interface card or 
built-in port 

• the printer's configuration, including its connecting cable. 

Table H-1 gives common symptoms of printer problems and 
possible causes for each of them. 

Table H-1. Printer Problems and Causes 

Problem 

No printing at all 

Possible Cause 
(See Section) 

Software (programming) error 
(The Software) 

Computer or interface card 
incorrectly configured or 
installed 
(The Computer) 

Printer incorrectly set up or 
configured 
(The Printer) 

Appendix H: Using a Printer With Logo 



• The Software 

For more information, see Chapter 
16. 

Table H·1. Printer Problems and Causes (Continued) 

Problem 

Incorrect printing 

Possible Cause 
(See Section) 

Computer or interface card 
incorrectly configured 
(The Computer) 

Wrong interface cable 
(The Computer) 

Printer incorrectly configured 
(The Printer) 

Identify the type of error that you are observing, then go to the 
appropriate sections of this appendix to find more information 
and suggestions for fixing the problems. 

If you follow all the suggestions and none of them turns out to 
be the cause of the problem, there may be something wrong 
with the equipment. In this case, take the printer and computer 
to your dealer to be thoroughly checked out and repaired, if 
necessary . 

If you can use your printer successfully with programs or 
languages other than Logo, it is likely that the problem lies with 
your Logo program. Logo treats all input and output operations 
as files. This means that before you can send information to the 
printer (referred to by the slot or port that it is connected to) 
you must open it for use and then select it as the current writer. 

Assuming that your printer is connected to slot or port 1, this 
program will send text to the printer: 

OPEN 1 SETWRITE 1 
PR [THIS IS A TEST:l 
PR [IF IT WORKS, SEND OUT FOR PIZZA!] 
CLOSE 1 SETWRITE [] 

OPEN 1 opens slot or port 1 for use, while SETWR I TE 
selects slot or port 1 as the current writer. Any PRINT, TYPE, 
or SHOW statements after this prints to the current writer, now 
the printer. The last line of the program closes the printer file 
and resets the current writer back to the screen. 

Appendix H: Using a Printer With Logo 



I 

I 

I 

I 

I 

• 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• The Computer 

Refer to your serial card 's manual 
for specific configuration 
information . 

Note: If your printer is connected to a different slot, use that 
slot number instead of the 1 's used in this program. When 
you f inish printing , you must close the printer file and reset 
the current writer to the screen. 

Remember that while up to six files can be open for use at one 
time, only one of these can be a slot or port. 

Start your hardware checks with the computer and the printer 
interface card . 

Logo treats the printer interface in the same way that Apple II 
Pascal version 1.1 does. Any card that does not conform to 
the Apple II Pascal protocol, such as the Apple II Parallel 
Interface Card, cannot readily be made to work with Logo. If 
you have an Apple II Parallel Interface Card, see your dealer 
for help in making it work with Logo. If you have any 
questions about another interface card, refer them to that 
card 's manufacturer. 

If you 're using an Apple lie, make sure that the interface card is 
properly plugged into one of the computer 's slots , usually 
slot 1. If you 're using an Apple lie, you must connect the printer 
to serial port 1 . 

If you have a serial printer such as the Apple lmagewriter, read 
the section "Serial Interfaces." If you have a parallel printer such 
as the Apple Dot Matrix Printer, skip to the section "Parallel 
Interfaces." 

The Computer 



Refer to both the printer 's and 
interface card 's reference manuals 
to find out how to set them up and 
to set their respective 
configurations. 

Serial Interlaces 

A serial interface is primarily defined by the following 
characteristics: 

• Data rate-how fast the information flows, measured in baud 

• Data format-how the information is organized for 
transmission: the number of bits per character, parity 
scheme, and number of stop bits 

• Other things affecting the printer's operation include whether 
or not: output is echoed to the screen, line feeds are 
appended to the ends of lines of text, and transmitted text is 
broken into lines of a given length. 

When you turn on an Apple lie, serial port 1 is automatically 
configured to match the factory-set configuration of the Apple 
lmagewriter printer: 

• 9600 baud data rate 

• 8-bit, no parity, two stop-bit data format 

• No auto line feed 

If you have an Apple lie, you normally set your serial interface 
card to the same configuration as that of the Apple lie's serial 
port 1. 

If your interface card can't operate as fast as 9600 baud, set 
it to run at its fastest rate and change the printer's 
configuration to match the interface card 's. 

Now you can test your printer by running the program given in 
section "The Software. " If your printer still doesn 't work, skip to 
section "The Printer. " 

Parallel Interlaces 
1"11 '~~"~' •naerntce 
If you have an Apple lie, this section doesn't apply. 

Make sure that the interface card is correctly plugged in. 
Connect the printer interface cable to the card and then to the 
printer as described in the interface card manual. Check the 
interface card 's switches, if any, and set them as described in 
its reference manual to match your printer's configuration. 

Appendix H: Using a Printer With Logo 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• The Printer 

See Chapter 16 for more about 
PRINTPIC. 

Make sure the printer is properly plugged into both the wall 
power socket and the printer interface cable. After setting any 
configuration switches as required to match the configuration of 
the interface being used, you are ready to test the printer. 

Your printer may print text properly but not print graphics 
when using PRINTPIC. To print graphics, PRINTPIC needs 
an Apple lmagewriter, an Apple Dot Matrix Printer, or a 
compatable printer and an interface card such as the Super 
s ena1 c ara, ror example, wnose nrmware ronows me 
conventions used by the Apple lie's serial port 1. If you have 
an Apple Dot Matrix Printer and an Apple II Parallel Interface 
card , see your dealer to get the printer to work with Logo. 

Now turn on your Apple II and the printer. Try to print some 
text using the test program in section 'The Software." If nothing 
happens, check the following items: 

• Has the printer run out of paper? Is the printer cover on 
.oo. t"ro.otl y ') l o t ho p r i n t o r ' o r- ibbon in oto. llod o.o t"r-ootl y , o r i o t ho 

printer at the end of the ribbon? 

• Is the printer on-line and selected? Some printers are set 
off-line, or deselected, when you replace paper or ribbons or 
advance the paper. After finishing one of these operations, 
the printer must be set back on-line, or selected (usually by 
pressing a button on the front panel}, before you can 
continue printing . 

• Are all interface and power connections properly set up? Is 
the printer's fuse blown? 

• Are all configuration switches on the interface card and the 
printer set for the same values? Refer to the respective 
devices ' reference manuals for the switch setings. 

• Does the interface card have a configuration block? Is it the 
correct configuration block? Has it been installed correctly? 
Could the interface cable have been installed upside-down? 

• Have you checked all the items listed above? If there is still 
no printing , see your dealer. 

The Printer 



If the printer outputs gibberish or just "hiccoughs, " check the 
data rate and data format settings of the interface and printer. 
Make sure that they match. Make sure that you have the proper 
interface cable. 

If text is being over-printed, set the printer to generate a line 
feed character after each line. If text is always double-spaced, 
reset the printer to not generate a line feed after a carriage 
return. 

Unexpected typefaces, such as double-width or very small 
characters, are probably caused by incorrect printer switch 
settings. 

For any remaining problems, refer to the trouble-shooting 
section of your printer's reference manual. 

Appendix H: Using a Printer With Logo 

I 

I 

I 

I 

I 

I 

I 

I 

I 

• 
I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

i 

I 

I 

I 

I 

I 



:1 

address: The location of a register, a particular part of 
memory, or some other data source or destination. 

Americal Standard Code for Information Interchange 
(ASCII): The standard code used for exchanging information 
about data processing systems and associated equipment. 

ASCII: See Americal Standard Code for Information 
Interchange. 

ASCII file: A text file whose characters are represented in 
ASCII codes. 

aspect ratio: A decimal number that is the ratio of the size of 
a vertical turtle step to the size of a horizontal one. 

binary: Something that has two possible values or states. 
Also refers to the base 2 numbering system. 

bit: A binary digit. 

boot: The process of loading a language or application 
program into the computer's memory as in when you start up 
Logo. 

buffer: An area of memory for temporary storage of data, 
used when transferring data from one device to another. Buffer 
usually refers to an area reserved for an input/output operation, 
into which data is read or from which data is written. 

bug: An error in a program. 

byte: Eight bits. 

call: To bring a computer program, a procedure, or a 
subprocedure into effect. 

Glossary 



character: A letter, digit, or other symbol that is used as part 
of the organization , control , or representation of data. 

command: A Logo procedure, either a primitive or one that 
you define, that has no output. CLEARSCREEN, FORWARD, 
and PRINT are examples of commands. See operation. 

conditional: A statement that causes Logo to carry out 
different instructions, depending on whether a condition is met. 

cursor: A movable marker that is used to indicate a position 
on the display screen. 

debug: To find and eliminate mistakes in a program. 

default: A value or option that is provided by the program 
when none is specified. 

device: Anything attached to the computer, such as a printer, 
video display, or disk drive. 

directory: A table on a disk of the names of all the files on 
that disk, along with information that tells ProDOS where to find 
the files on the disk. 

echo: To reflect received data to the sender. For example, 
keys pressed on the keyboard are usually echoed as characters 
displayed on the screen. 

edit: To enter, modify, or delete data. 

edit buffer: The portion of the computer's memory that 
contains all the text that is in the Logo Editor. 

element: A member of a set; in particular, an item in a series. 

empty list: A list that has no elements. You write the empty 
list as []. 

empty word: A word that has no characters . You write the 
empty word as " . 

erase: To remove information permanently from either the 
- - - - ...... -··-·· ,.... ..... . ···-··-··"'' ] 0 .., ... .... ..... ...... . ... . . .... 

workspace or a file. 

execute: To perform an instruction or a computer program. 

file: An organized collection of information that can be 
permanently stored for specific purposes. 

format: The particular arrangement or layout of data on a 
data medium, such as the screen or a disk. 

Glossary 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

garbage collection: Cleaning the computer 's memory to 
make more space available for storage. 

global variable: A variable that is always in the workspace, 
such as a variable you create with the MAKE primitive. See 
local variable. 

infix notation: A way of expressing an arithmatic operation 
where the operation symbol is placed between the two 
numerical inputs. See prefix notation. 

input: The information that a Logo primitive or procedure 
needs to begin execution. 

instruction: In a programming language, any meaningful 
expression that specifies one command and its inputs. 

integer: A positive or negative number that does not contain 
any fractional parts. 

interactive: A program that creates a dialogue between the 
computer and the user. 

K: When referring to storage capacity, two to the tenth power 
or 1024 in decimal notation. 

list: A collection of Logo objects, a sequence of words or lists 
that begins and ends with brackets. 

literal word: An explicit representation of a value, especially 
the value of a word or list. A literal word is preceded by the 
quotation mark character ("). 

local variable: A variable that exists only when a procedure 
is being executed. See global variable. 

laeiliaR: ARy p l ac~ iR wRicR aata may Be stsFea. 
logical operation: A predicate whose input must be either 
TRUE or FALSE. 

name: A word used as a container for a value in the 
workspace. 

node: A division of your workspace. Each node is five bytes 
long. 

object: A word or a list. 

operation: A Logo procedure, either a primitive or one that 
you define, that has some kind of output. SUM, ONLINE, POS 
are examples of operations. See command. 

Glossary 



output: The information that a Logo primitive or procedure 
gives to another primitive or procedure. 

parse: The process by which phrases are associated with the 
component names of the grammar that generated the string. In 
Logo, to make sense out of a Logo line. 

pathname: The name that indicates the location of a file on a 
disk. A pathname consists of a device name, a subdirectory 
name or names , and the name of the file itself. 

picture element (PIXEL): A graphics point. Also, the bits 
that contain the information for that point. 

predicate: A procedure that outputs either TRUE or FALSE. 

prefix: A pathname of a directory or subdirectory that is 
automatically placed in front of a filename that does not begin 
with a slash. 

prefix notation: A way of expressing an arithmetic operation 
where the operation symbol or primitive is placed before the 
numerical inputs. See infix notation. 

primitive: A procedure that is built into Logo. 

procedure: A single instruction or a sequence of instructions 
to Logo, which has a name and can be permanently stored . 

procedure call: A request to execute a named procedure. 
You call a procedure either from the top level or from within 
another procedure. 

ProDOS: The Apple lie and Apple lie operating system under 
which Logo runs . 

program: A set of procedures that work together. 

prompt: A question the computer asks or a signal it displays 
when it wants you to supply information. 

property list: A list consisting of an even number of 
elements . Each pair of elements consists of a property (such as 
I.D.) and its value, a word or list (such as Robin) . 

read: To input data into a device so that you can have access 
to it. 

real number: Any positive or negative decimal number. 

Glossary 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

• 
I 

I 

I 

I 

I 

I 

I 

recursive procedure: A procedure that calls itself as a 
subprocedure. For example: 

TO FLIP 

FLIP 
END 

scientific notation: The expression of numbers using an 
exponent. 

scroll: To move all or part of the display image vertically or 
horizontally so that new data appears at one edge as old data 
disappears at the opposite edge. 

stack: A method of temporarily storing data so that the last 
item stored is the first item to be processed . 

storage: A device, or part of a device, that can retain data. 

string: A sequence of characters. 

subdirectory: A group of logically related files on the same 
disk. 

subprocedure: A procedure used in the definition of another 
procedure. For example: 

TO A 
lj 

END 

A calls B so B is a subprocedure of A. 

superprocedure: A procedure that calls another procedure. 
For example: 

TO A 
B 
END 

A calls B so A is a superprocedure of B. 

syntax: The rules governing the structure of a language. 

top level: The mode in which commands can be executed 
directly without being embedded in a program. 

truncate: To remove the ending elements from a word. For a 
number, to remove the fractional part. 

Glossary 



turtle: The shape on the screen that represents the pen Logo 
uses to draw lines. 

value: The contents of a variable. 

variable: A container that holds a value and has a name. 

volume: A formatted disk. The volume name is also the name 
of the top level directory. 

word: A series of characters treated as a unit. 

workspace: The part of the computer's memory that holds 
variables, procedures, and properties only as long as the 
computer is turned on. 

write: To record data on a data medium. 

Glossary 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



Cast of Characters 

(asterisk) 120 
[] (brackets) 13, 68 

(colon) 14, 15 
I (division sign) 121 
$STEP 152 
$UNSTEP 152 

(equal sign) 122 
(exclamation mark) 17, 27 

> (greater than sign) 122 
< (less than sign) 121 
+ (plus sign) 119 

A 

(minus sign) 119 
(quotation mark) 13 

parsing of 277 

ABS procedure 120, 131 , 257 
accessing files 192 
addition 106 

with SUM operation 117 
AGE procedure 168 
ALLOPEN operation 212 
AND operation 158 
ANNOUNCE procedure 79 
ANYBASE.TO.ANYBASE 

procedure 257 
ARCCOS procedure 108 
ARCL procedure 256 

Index 

ARCR procedure 256 
ARCSIN procedure 108 
ARCTAN operation 1 08 
arctangent 1 08 
arithmetic operations 

addition 1 06, 117 
descriptions of 105 
division 1 06, 112, 113 
evaluation of 1 07 
infix-form 118-122 
multiplication 106, 112, 120 
prefix-form 107-118 
results of 106 
subtraction 106, 109 

ASCII codes 83, 281 
ASCII operation 81 
ASKINFO procedure 222 
aspect ratio 243 
assembly language 238 
asterisk (*) 120 
.AUXDEPOSIT command 241 
.AUXEXAMINE operation 242 
auxiliary memory bank 238 

8 

BACK command 36 
background color 51 , 54 
BACKGROUND (BG) operation 

54 



BEFOREP operation 82 CIRCLEL procedure 256 
I 

BF (BUTFIRST) operation CIRCLER procedure 256 
69-70 CLEAN command 47 I BG (BACKGROUND) operation cleaning the workspace 
54 182-185 

BK (BACK) command 36 CLEARSCREEN (CS) I BL (BUTLAST) operation 71 command 37 
BLOAD command 242 CLEARTEXT (CT) command 
blocks 190 60 I brackets ([]) 13, 68 CLOSE command 212 

parsing of 277 CLOSEALL command 213 
.BSAVE command 242 CO command 130 I buffer 26 colon(:) 14, 15 

edit 28, 241 color 
file 241 background 51 , 54 I graphics 241 pen 53, 55 
kill 27 COMFORT procedure 158 

BURY command 182 commands and operations 14 I bury facility 175 COMMENT procedure 71 , 261 
BURY ALL command 183 conditionals 125, 126-129 
BURYNAME command 183 .CONTENTS operation 245 I BUTFIRST (BF) operation continuation lines 17, 27 

69-70 control characters 144 
BUTLAST (BL) operation 71 interrupting procedures with I BUTTONP operation 163 144 
BYE procedure 212 changing screen use with 63 

CONTROL-L 63 I CONTROL-S 64 
c CONTROL-T 64 

C.TO.N procedure 258 CONTROL-W 144 I CONTROL-Z 144 CALCULATOR procedure 138 
CONVERT procedure 84, 257 .CALL command 242 
coordinates , x and y 41 , 45 I CANCEL procedure 149 

CATALOG command 194 COPY procedure 198, 264 

CATCH command 133, 136, COPYDEF command 147-148 

140 COS operation 1 08 I 
CHAR operation 83 cosine 108 

COUNT operation 85 characters 
COUNTDOWN procedure 132, I ASCII codes for 281 

deleting 6 137 
COUNTUP procedure 142 reading 165, 166 
CREATEDIR command 195 I CHECKPOS procedure 220 

G H t:Gt\Ht:Au proce ure c. o 
CHECKWRITE procedure 221 

I CIRCLE procedure 244 

3161 Index I 



CS (CLEARSCREEN) disk(s) 
command 37 formatting 190 

CT (CLEARTEXT) command organization 190 
60 volume directory 190 

CUBE procedure 112 volume name 190 
CURSOR operation 60 DISTANCE procedure 117 
cursor movement 5, 29 division 1 06 

with INTQUOTIENT 
operation 112 

D with QUOTIENT operation 

D6 procedure 113 
113 

I data files 189 
division sign (/) 121 

closing 212, 213 
DIVISORP procedure 114, 258 

opening 211 , 214 
DOlT procedure 135 

reading from 211 
DOIT1 procedure 135 

sample project 221 
$STEP procedure 152 

working with 211-221 
$UNSTEP procedure 152 
DOT command 47 

writing to 211 DOTP operation 54 
debugging programs 140-144 

DRIBBLE command 209 
DEC.TO.ANYBASE procedure 

dribble files 189 
257 working with 209-211 

DECIDE procedure 126 
DECIMALP procedure 158 

DRIVE procedure 262 

decimals 105 
DUMP procedure 210 

DECTOHEX procedure 258 
DEFINE command 147, 148 E 
DEFINEP operation 147, 150 
defining procedure 11 , 21-22 ED (EDIT command 28 
deleting edit buffer 26, 28, 196, 241 

characters 6 EDIT command 28 
lines 6 EDITFILE command 31, 196 
text 30 editing in the Editor 29 

delimiters, parsing of 275, editing procedures 28 
277 Editor 25 

.DEPOSIT command 242 editing in the 29 
device(s) 205 getting out of 31 

closing 212, 213 help 4 
opening 211 , 214 how it works 26 

DICE procedure 115 keystrokes 
DIFFERENCE operation 109 cursor movement 29 
directory 190 deleting and inserting text 

listing 194 30 
prefix 193 starting up 28, 31 

typing in the 29 

Index 



EON command 31, 96 erasing 196 
I 

EONS command 31 , 97 listing 194 
EFRAC procedure 260 opening 211, 214 I ELLIPSE procedure 244 reading from 211 
empty list 69 saving 206 
empty word 68 with SA VEL 207 I EMPTYP operation 85 startup 267 
END (special word) 21 , 22 types 189 
equal sign ( =) 122 writing to 211 I EQUALP operation 87, 106 file buffers 241 
equipment you must have 3 FILELEN operation 214 
ER (ERASE) command 181 filename 193 I ERALL command 181 changing 199 
ERASE (ER) command 181 FILEP operation 196 
ERASEFILE (ERF) command FILERL procedure 218 I 196 FILL command 48 
erasing from the workspace FILLAT procedure 49 

180-182 FILLIN procedure 214 I ERF (ERASEFILE) command FINDBIRTH procedure 231 
196 FINDINFO procedure 224 

ERN command 181 FINDTEL procedure 224 I ERNS command 181 FIRST operation 69, 71 
ERPROPS command 230 FLAVORCHART procedure 61 
ERPS command 181 FLIP procedure 14 I error messages 135, 251 flow of control 125-126 
ERROR operation 135 FOREVER procedure 139, 261 
EVENP procedure 114 FORM operation 109 I .EXAMINE operation 243 formatting disks 190 
examining words and lists 81 FORWARD (FD) command 37 
exclamation mark (!) 17, 27 FPUT operation 75, 76 I executing procedures 12 frequencies , note 171 
EXP procedure 260 FROM.HOME procedure 117 

FS (FULLSCREEN) command I 61 
F FULLSCREEN (FS) command 

FACTORIAL procedure 121 
61 I 

FALSE 126 
FD (FORWARD) command 37 

G I FENCE command 48 
file(s) 189 garbage collection 177 

accessing 192 GET.USER procedure 167 

I closing 212, 213 GETLINES procedure 263 
description of 189 

1 -

3181 Index I 



I 
global variables 16, 95 INP procedure 87 
GO command 136 input word 7 

I GOODVEE procedure 44 inputs to procedures 13 
GPROP operation 230 INSERT procedure 82, 261 
graphics, printing 4 inserting text 30 

I graphics buffer 241 instructions 
graphics screen 35, 59 repeating 133 

erasing with CLEAN 47 transferring control 133 

I erasing with CLEARSCREEN INT operation 111 
37 integers 1 05 

loading pictures into 208 INTERPRET procedure 165 

I printing the 208 interrupting procedures 
saving the 208 129-133 

greater than sign (> ) 122 INTP procedure 111 

I GREET 13, 16, 22, 98, 177, INTPWR procedure 259 
178 INTQUOTIENT operation 112 

INVERSE procedure 281 

I inverse tangent 1 OS 
H ITEM operation 73 

I 
halting procedures 126 
HASDOTP procedure 158 J, K 
HEADING operation 43 

I 
heip feature 4, 6 i<EYP operation 164 
·help screen, loading 197 keystrokes used at top level 5 
HEXTODEC procedure 258 kill buffer 27 

I 
HIDETURTLE (HT) command 

38 
HOME command 38 L 

I 
HT (HIDETURTLE) command LABEL command 137 

38 LAST operation 73 
LATIN procedure 80 

I i bEA~N ~m~ram 1 £!§ 
LEFT (L T) command 38 

IF (command or operation) 126 LENGTH procedure 177, 178 

I IFFALSE (IFF) command 127 less than sign ( < ) 121 
IFTRUE (1FT) command 128 lines 
IGNORE procedure 152 continuation 17 

I INC procedure 102 deleting 6 
infix notation 1 05 parsing 275 
infix procedures 276 reading 167 

I infix-form operations 118-122 retrieving 6 
parsing of 276 

I 

I Index 1319 



list(s) messages, error 135, 251 
I 

breaking into pieces 69 minus sign (-) 119 

I description of 68 parsing of 278 
empty 69 MODIFY procedure 225 
examining 81 MODINFO procedure 226 

I property 229 MOUNTAINS procedure 160 
putting together 75 MOVE procedure 171 
reading 167 MOVECURSOR procedure 62 

I LIST operation 75, 76 moving the cursor 5, 29-30 
LISTEN procedure 263 multiplication 106 
LISTFILE procedure 217 with the asterisk (*) 120 

I LISTP operation 88 with PRODUCT operation 
LN procedure 258 112 
LN1 procedure 259 music, making with TOOT 171 

I LOAD command 206 
LOADHELP command 197 
LOADPIC command 208 N 
LOCAL command 98 

N.TO.C procedure 258 I local variables 16, 95 
LOG procedure 258 NAME command 100 

logical operations 157 NAMEIT procedure 264 
I Logo Editor See Editor NAMEP operation 101 

Logo line 17 NEAR procedure 120 

lowercase letters 5 NEWENTRY procedure 78 
I LOWERCASE operation 90 node space 241 

LPUT operation 75, 77 
nodes, allocating 271 

L T (LEFT) command 38 
NODES operation 176 

I NODRIBBLE command 210 
NOT operation 159 

M notation 
I infix 105 

main memory bank 238 prefix 105 
MAKE command 15, 99 scientific 1 06, 11 0 

I MAP procedure 138, 261 note frequencies 171 
MARK.TWAIN procedure 130 number(s) 
math operations, evaluated by square root 117 

I Logo 107 types (decimal and integer) 
MEMBER operation 74 105 
MEMBERP operation 88 NUMBRP operation 89 

I memory 
auxiliary bank 238 
main bank 238 

I memory space, how to save 
272 

MESSAGE procedure 168 
I 

3201 Index I 



I 
0 PIG procedure 80, 81 

·I object 15 PLIST operation 231 
plus sign ( + ) 119 ONLINE operation 197 
PO command 177 

OP (OUTPUT) command 130 
POALL command 178 I OPEN command 214 
POFILE command 198 ESC 143 

opening files 211 POLY procedure 26, 39, 151 , 
178, 179, 256 I operations, logical 157 

POL YSPI procedure 176 
operations and commands 14 

PON command 178 OR operation 160 
PONS command 179 I organizing the workspace 
POPS command 179 182-185 
POS operation 43 

OUTPUT (OP) command 130 
POT command 180 I POTS command 180 

p PPROP command 232 

I 
PPS command 232 

paddle 163 PR (PRINT) command 169 
PADDLE operation 163 predicate(s) 126, 157 

II parentheses 1 07, 122 prefix 193 
parsing of 277 directory 193 

PARSE operation 78 notation 1 05 

I 
parsing 275-278 setting 199 
pathname 193 PREFIX operation 198 

changing 199 prefix-form operations 107 

I 
PAUSE (command or PRIMARYP procedure 91 

operation) 131 PRIMITIVEP procedure 147, 
pausing in procedures 126 150 

I 
PO (PENDOWN) command 49 primitives 4, 11 
PE (PENERASE) command 50 PRINT (PR) command 169 
pen color 53, 55 print text and graphics 4 
PEN operation 54 PRINTBACK procedure 74 
pen state 4 7-53, 54-55 PRINTDOWN procedure 72 
PENCOLOR (PC) operation 55 printers 4 
PENDOWN (PO) command 49 printing variables 178 
PENERASE (PE) command 50 printing with the DUMP 
PENREVERSE (PX) command procedure 210 

I 
50 PRINTMESSAGES 27 

PENUP (PU) command 51 PRINTPIC command 208 
PHONELIST procedure 231 
picture file(s) 189 

loading 208 
printing 4, 208 

I 
saving the 208 
working with 207-208 

I Index 1321 



I 
procedures 11 punctuation 

burying 182, 183 brackets 13, 68 

I debugging 140-144 colon 14, 15 
defining 11, 21 exclamation mark 17, 27 
editing 28 in procedures 13 

I erasing 181, 182 parsing of 275-278 
executing 12 quotation marks 13 
halting 126 slash 191 

I input to 13 PWR procedure 259 
interrupting 126, 129-133, PWRLOOP procedure 259 

143 PX (PENREVERSE) command 
with CONTROL-W 144 50 I 
with CONTROL-Z 144 

pausing in 126 

I printing definitions of 177, Q 
178 

.QUIT command 245 
printing title lines of 180 

QUIZ procedure 127 I punctuation in 13 
QUIZ2 procedure 128 

saving with SAVE 206 
quotation mark 13 

saving with SAVEL 207 
types 14 parsing of 277 I 
unburying 184 

QUOTIENT operation 113 

ProDOS 190 
PRODUCT operation 112 

R I 
program files 189 

working with 206-207 RANDOM operation 113 

I programs, debugging 140-144 RANPICK procedure 85 
prompt character 21 ratio, aspect 243 
PROMPT procedure 171 read position, setting 218 

I properties READCHAR operation 165 
erasing 230 READCHARS operation 166 
printing 232 READER operation 215 

I removing 233 reader, setting 217 
saving with SAVE 206 READFILE procedure 215 
saving with SAVEL 207 READLINES procedure 149 

I property list 229 READLIST (RL) operation 167 
erasing 230 READNUM procedure 134 
printing 232 READPOS operation 216 

I READWORD (RW) operation 
167 

REALWORDP procedure 159 

I 

I 

3221 Index I 



I 
recursion 12 SENTENCE (SE) operation 75, 

I 
RECYCLE command 177 78 
REMAINDER operation 114 SETBG command 51 
removing a character 6 .SETCRUNCH command 243 

I 
removing a line 6 SETCURSOR command 61 
REMPROP command 233 SETH (SETHEADING) 
RENAME command 199 command 40 

I 
REPEAT command 137 SETHEADING (SETH) 
repetition 126, 133 command 40 
REPORT procedure 132 SETPC command 53 

I 
REPRINT procedure 169 SETPOS command 40 
RERANDOM command 115 SETPREFIX command 199 
retrieving a line 6 SETREAD command 217 

I 
REVPRINT procedure 86 SETREADPOS command 218 
RIGHT (RT) command 39 SETWIDTH command 62 
ROOT procedure 259 SETWRITE command 218 

I 
ROUND operation 116 SETWRITEPOS command 219 
RT (RIGHT) command 39 SETX command 41 
RUN (command or operation) SETY command 41 

I 
138 SHORTQUIZ procedure 129 

RUNSTORE procedure 263 SHOW command 170 
SHOWINPUTS procedure 153 

I 
SHOWLINES procedure 153 

s SHOWNP operation 44 

SAFE.SQUARE procedure 139 
SHOWTURTLE (ST) command 

42 

I SAFESQUARE procedure 136 
SIN operation 116 

sample project using the data 
file 221 

SIREN procedure 171 

I SAVE command 206 
slash (/) 191 

SAVEINFO procedure 222 
SLITHER subprocedure 134 

SA VEL command 207 
SNAKE procedure 134 

I SAVEPIC command 208 
SORT 261 , 261 

saving space 272 
SORT procedure 82 

scientific notation 1 06, 11 0 sounds, making with TOOT 
171 

I screen 
space, saving 272 

changing use of 59 
dimensions 59 

SPI procedure 40, 178 

I graphics 35, 59 
SPLITSCREEN (SS) command 

text 35, 59 63 

.SCRUNCH operation 243 sa procedure 117' 176 

I SE (SENTENCE) operation 75 SORT operation 117 

SECRETCODE procedure 81 
SQUARE procedure 37, 139, 

SECRETCODELET procedure 
140, 148, 151 

I 82 
square root 117 

SENGEN procedure 176 

I Index 1323 





I v WIPEOUT procedure 263 
word, empty 68 

I value 95 word delimiters 68 
of variable 178, 179 WORD operation 75, 80 

variable(s) 14, 15-16 WORDP operation 90, 159 

I assigning values to 15 words 
creating 95 breaking into pieces 69 

with MAKE 99 description of 67 

I with NAME 100 changing the case of 90 
description of 95 examining 81 
editing with EDN 96 putting together 75 

I editing with EONS 97 workspace 
erasing 181 cleaning 182-185 
global 16, 95 description of 175 

I local 16, 95 erasing from 180-182 
names organizing 182-185 

burying 183 printing from 177-180 

I printing 179 saving with SAVE 206 
unburying 184, 185 saving with SAVEL 207 

saving with SAVE 206 WRAP command 53 

I saving with SAVEL 207 write position, setting 219 
STARTUP 268 WRITEINFO procedure 222 
types 16, 95 WRITEPOS operation 220 

I value, printing 178, 179 writer, setting 218 
VEE procedure 44 WRITER operation 221 
volume directory 190 

I volume names 190 
listing 197 X 

VOWELP procedure 89 
x-y coordinates 41 , 45, 46 

I XCOR operation 45 
w XYZZY procedure 165 

I WAIT command 132 
WALK procedure 131 Y,Z 
WARMWELCOME procedure 

y coordinate 41 , 45, 46 I 12 
WEATHER procedure 100 YCOR operation 46 
WELCOME procedure 269 YESNO procedure 98 

I WHICH procedure 130 YESP procedure 91 
WHILE procedure 138, 262 
WIDTH operation 63 

I WINDOW command 53 

I 

I Index 1325 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

II Apple Logo II Reference Card 

Parentheses around an input indicate that the input is optional. A number 
sign(#) indicates a procedure that can take any number of inputs; if you 
give it other than the number indicated, you must enclose the entire 
expression in parentheses. 

Defining and Editing 

EDIT, ED (name(list)) 
EON name(list) 
EONS 
END 
TO name (inputs) 

Turtle Graphics 
BACK, BK n 
BACKGROUND,BG 
CLEAN 
CLEARSCREEN,CS 
DOT {xcor ycor} 
DOTP [xcor ycor] 
FENCE 
FILL 
FORWARD, FD distance 
HEADING 
HIDETURTLE, HT 
HOME 
LEFT, L T degrees 
PEN 
PENCOLOR, PC 
PENDOWN, PO 
PENERASE,P.E 
PENREVERSE,PX 
PENUP, PU 
POS 
RIGHT, RT degrees 
SETBG colornumber 
SETHEADING, SETH degrees 
SETPC colornumber 
SETPOS [xcor ycor] 
SETX xcor 
SETY ycor 
SHOWNP 
SHOWTURTLE, ST 
TOWARDS [xcor ycor] 
WINDOW 
WRAP 
XCOR 
YCOR 

Text and Screen 
CLEARTEXT, CT 
CURSOR 
FULLSCREEN, FS 
SETCURSOR [columnnumber 
linen umber} 
SETWIDTH width 
SPLltSCREEN, SS 
TEXTSCREEN, TS 
WIDTH 

'Otds and Lists 
ASOII chflT 
BEFDRI:.,P word! word2 
BUTFJRSt, BF obj 
BUTLAST, BL obj 
CHAR intege 
COUNT db. 
I;MPTYP obj 
EOUALP obj1 6bj2: 
FIRST obj 
FPUT obj fist 
ITEM integer obj 
LAST obj • 
#LIStobjt obj2, 
LISTP obj 
LOWERCASE. word 
LPUT obj fist 
MEMBER objt obf:!. 
MEMBERP objt obj,2 
NUMBERP obj 
PARSE word .. 
#SENTENCE, SE objJ 'obj2 
UPPERCASE word 
#WORD wordt word2 
WORDP obj i..J.~~Jii 

Variables 
EON name(list) 
EONS 
#LOCAL name(list) 
MAKE name obj 
NAME obj name 
NAMEP word 
THING name 

Arithmetic Operations 
ARCTAN number 
COS degrees 
DIFFERENCE number! 
number2 
FORM number field precision 
INT number 
INTQUOTIENT integer! integer2 
#PRODUCT number! number2 
QUOTIENT numbert number2 
RANDOM integer 
REMAINDER integer! integer2 
RERANDOM 
ROUND number 
SIN degrees 
SORT number 
#SUM numbert number2 

Flow of Control 
CATCH name list 
co 
ERROR 
GO word 
IF pred listt (list2) 
IFFALSE, IFF list 
IFTRUE, 1FT list 
LABEL word 
OUTPUT, OP obj 
PAUSE 
REPEAT integer list 
RUN list 
STEP name(list) 
STOP 
TEST pred 
THROW name 
TRACE name(list) 
UNSTEP name(list) 
UNTRACE name(/ist) 
WAIT integer 

Defining Procedures 
Under Program Control 
COPYDEF name newname 
DEFINE name list 
DEFINEDP word 
PRIMITIVEP name 
TEXT name 

Logical Operations 
#AND pred1 pred2 
NOT pred 
#OR pred1 pred2 

The Outside World 
BUTTONP paddlenumber 
KEYP 
PADDLE paddlenumber 
#PRINT, PR obj 
READCHAR,RC 
READCHARS, RCS integer 
READLIST, RL 
READWORD, RW 
SHOWobj 
TOOT frequency duration 
#TYPE obj 

'Orkspace 
ranagement 

BURY name(list) 
BURY ALL 
BURYNAME name(list) 
ERALL 
ERASE, ER name(list) 
ERN name{list) 
ERNS 
ERPS 
NODES 
PO name(list) 
PO ALL 
PON name(list) 
PONS 
POPS 
POT name(list) 
POTS 
RECYCLE 
UNBURY name(list) 
UN BURY ALL 
UNBURYNAME name(list) 



Files 
ALL OPEN 
CATALOG 
CLOSE file 
CLOSEALL 
CREATEDIR pathname 
DRIBBLE file 
EDITFILE pathname 
ERASEFILE, ERF pathname 
FILELEN file 
FILEP file 
LOAD pathname 
LOADPIC pathname 
NODRIBBLE 
ONLINE 
OPEN pathname 
POFILE pathname 
PREFIX 
PRINTPIC integer 
READER 
READPOS 
RENAME pathname 
newpathname 
SAVE pathname 
SAVEL name(list) pathname 
SAVEPIC pathname 
SETPREFIX prefix 
SETREAD file 
SETREADPOS integer 
SETWRITE file 
SETWRITEPOS integer 
WRITEPOS 
WRITER 

Property Lists 
ERPROPS 
GPROP name prop 
PLIST name 
PPROP name prop obj 
PPS 
REM PROP name prop 

Special Primitives 
.AUXDEPOSIT foe byte 
.AUXEXAMINE foe 
.BLOAD pathname foe 
.BSAVE pathname foe integer 
.CALL foe 
.CONTENTS 
.DEPOSIT foe byte 
.EXAMINE foe 
.QUIT 
.SCRUNCH 
.SETSCRUNCH number 

Primitives (Infix Form) 
number1 + number2 
number 1 - number2 
number 1 * number2 
number1 I number2 
number1 < number2 
obj1 = obj2 
number 1 > number2 

Help Screen Primitives · 
HELP word 
LOADHELP pathname 

Special Words 
ERROR 
FALSE 
STARTUP 
TOPLEVEL 
TRUE 

I 
. Notes 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



I ' 

I 
I . 

1 .·. 

I 

I 

I 

I 

I 

I 

I 

I . 

I 

I 

I 

-






