























116 SIN
117 SQRT
117 SUM

118 Infix-Form Operations
119 Plus Sign

119 Minus Sign

120 Multiplication Sign
121 Division Sign

121 Less Than Sign
122 Equal Sign

122 Greater Than Sign

of Control

125 Flow of Control: Some General Information
126 Using Conditionals

126 IF

127 IFFALSE

128 IFTRUE

128 TEST

129 Interrupting Procedures
130 CO

130 OUTPUT

131 PAUSE

132 STOP

132 WAIT

133 Transferring Control and Repeating Instructions
133 CATCH

135 ERROR
136 GO

137 LABEL
137 REPEAT
138 RUN

140 THROW

140 Debugging Programs
141 STEP

141 TRACE

143 UNSTEP

142 1INTRACE

144 Special Control Characters
144 OPEN APPLE-ESC

144 CONTROL-W

144 CONTROL-Z

Table of Contents

[vii




Under Program Control

148
148
150
150
151

158
159
160

163
163
164
164
164
165
166
167
167
168
169
170
170
171

176
176
177
177
177
178
178
179

COPYDEF
DEFINE
DEFINEDP
PRIMITIVEP
TEXT

AND
NOT
OR

Using Paddles
BUTTONP
PADDLE
Making Logo Read Information
KEYP
READCHAR
READCHARS
P sT
READWORD
Making Logo Write Information
PRINT
SHOW
TYPE
Making Sounds With TOOT

Sizing Up Your Workspace
NODES
RECYCLE

Printing From the Workspace
PO
POALL
PON
PONS

Table of Contents




L.

179 POPS
180 POT
180 POTS

180 Erasing From the Workspace
181 ERALL

181 ERASE
181 ERN
181 ERNS
182 ERPS

182 Cleaning and Organizing the Workspace
182 BURY

182 BURYALL

183 BURYNAME

184 UNBURY

184 UNBURYALL

185 UNBURYNAME

189 Logo’s File System: Some General Information

189 What Is a File?

190 Disk Formatting and Volume Names
190 Disk Organization

192 Accessing Files

194 General File System Primitives
194 CATALOG

195 CREATEDIR

196 EDITFILE

196 ERASEFILE

196 FILEP

197 LOADHELP

197 ONLINE

198 POFILE

198 PREFIX

199 RENAME

199 SETPREFIX

206 Working With Program Files

206 LOAD
206 SAVE
207 SAVEL

Table of Contents

X







242
242
242
242
242
243
243
243
243
245
245
245

255
255
256
256
257
257
257

258
258
259
260
260
261
261
261
262
262
262
262
263

AUXEXAMINE
.BLOAD
.BSAVE

.CALL
.DEPOSIT
.EXAMINE

Special Graphics Primitives

.SCRUNCH
.SETSCRUNCH

Miscellanecus Primitives

.CONTENTS
QUIT

Graphics Tools

ARCR and ARCL
CIRCLER and CIRCLEL
POLY

Math Tools

ABS
CONVERT
2
LOG

LN

PWR

EXP

Program Logic or Debugging Tools

COMMENT

FOREVER

MAP

SORT and SUPERSORT
WHILE

Tools for the Young Logo User

DRIVE
TEACH

Table of Contents

1 XI







e



















s oe ) oud

This manual describes in detail how to use Apple Logo Il and is
intended for reference purposes. The accompanying manual,
Apple Logo II: An Introduction to Programming, introduces you
to the more fundamental features of Logo and is intended as a
guide to becoming familiar with Logo.

This reference manual offers concise descriptions of each of
the primitives in the Logo language, along with many sample
programs (procedures). The chapter headings listed in the Table
of Contents provide a handy reference to how the primitives are
organized.

Here are some suggestions on how to proceed.

The intended audience This manual is written for
people who already know
something about Logo or
languages like Logo.

To learn the basics Work through the
accompanying manual, Apple
Logo II: An Introduction to

Programming.
) get an overview of the Read Chapter 2, Logo
rules of Logo's grammar Grammar. You should read the
overview before using this
manual.
How to Use This Manual Xix













3 What You Need

4 Getting Help From Logo

5 Typing Logo Instructions

6 How Primitives Are Described

Chapter 1: Introduction

|l 491deyo













For a list of the keystrokes used
with the Logo Editor, see
Chapter 4, Using the Logo Editor.

This section describes the guidelines for typing in uppercase
and lowercase letters and the keystrokes for communicating
with Logo from the keyboard.

Logo does not distinguish between uppercase and lowercase
letters in any words you type. Thus, when typing anything into
the computer, you need not pay attention to which case you are
using. For example, if you define a procedure with the name
SQUARE, then ask Logo to execute it, Logo will execute it
regardless of what case you use for the letters. So, SQUARE is
the same as Square or square.

Table 1-1 lists the keystrokes to use with Logo at top level and
what they do.

Table 1-1. Keystrokes for Typing and Editing

Keystroke What It Does

Moves the cursor left one character position.
Moves the cursor right one character position.
(8 )(~) Moves the cursor left one word.
(a)(=) Moves the cursor right one word.
T, or Moves the cursor to the beginning of the

) current line.
(&)-(>) or Moves the cursor to the end of the current
(&) line.

Typing Logo Instructions [5










Table 1-2. input Words (continued)
input Word
number

object (obj)

paddlenumber

pathname

precision

predicate

prefix

property
width
word

[xcor ycor]

Chapter 1: Introduction

Description
A real number or an integer.

A Logo object—a word, a list,
or a number.

An integer (0, 1, 2 or 3)
specifying the paddle.

A name that indicates the path
to a file on a disk.

An integer from 0 through 6,
giving the number of digits
after the decimal point in a
real number.

An operation that gives either
the word TRUE or the word
FALSE.

A name for a ProDOS prefix

f
A word.
An integer, either 40 or 80.
A sequence of characters.

A list of two numbers giving
the coordinates of the turtle.




11
13
14
15
16
17

Procedures

Punctuation and Inputs to Procedures
Commands and Operations

Variables

Global and Local Variables
Understanding a Logo Line

Chapter 2: Logo Grammar

1891deyo

c













Logo interprets every word as a request to run a procedure.
You must use special characters to indicate when this is not the
case.

A word beginning with a quotation mark—for example, "HI—
tells Logo that the word must be treated literally, not as a
procedure call. Here, "Hl is an input to the procedure PRINT.

?PRINT "™HI
HI

Numbers are like literal words, but don’t need quotation marks.

?PRINT 5
5

A sequence of words surrounded by square brackets indicates
a list. Lists can be inputs to procedures.

?PRINT [ARE WE HAVING FUN?]
ARE WE HAVING FUN?

The list [ARE WE HAVING FUN] is a literal list; Logo does not
try to execute it. The following example illustrates this more
clearly.

?PRINT [2 + 2]
2 + 2

Without the brackets, Logo will attempt to execute the
sequence of words.

?PRINT ARE WE HAVING FUN?
T - :
or

?PRINT 2 + 2
4

Your procedures can also have inputs. For example:

TO GREET :NAME (title line)
PR *HI

PR :NAME

PR [HAVE A NICE DAY]

END

Punctuation and Inputs to Procedures 13




A word beginning with a colon (:) tells Logo that the word is a

variable. Variables that hold the inputs to procedures are written

on the title line after the name of the procedure. NAME is a
variable whose value is determined when GREET is called. The
main body of GREET contains three calls of the procedure
PRINT (PR is the short form of PRINT). The second of these
calls uses the current value of NAME.

Here’s an example of a request to execute GREET at top level.

?GREET "GUY

HI

GUY

HAVE A NICE DAY

In this case, the inpwt is the literal word GUY; Logo makes this
the value of NAME when it executes GREET.

There are two kinds of procedures in Logo: operations and
commands. Operations output a value to another procedure;
commands (such as PRINT) do not.

The primitive SUM is an operation that outputs the sum of two
numeric inputs. In this example, the output of SUM is sent to
the primitive command PRINT:

?PRINT SUM 31 28
59

Because an operation can be used only as an input to another
procedure, every Logo line must begin with a command.
Otherwise, you get an error message. For example:

?SUM 31 28
YOU DON‘T SAY WHAT TO DO WITH 59

Your procedures can be commands or operations. The
procedure GREET is a command. To construct operations, you
must use the primitive OUTPUT. The procedure FLIP, for
example, is an operation:

TO FLIP

IF (RAl 1 )
OUTPUT =1A1LS
END

= [ TE T ™

Chapter 2: Logo Grammar













If N has been assigned the value 10,
?MAKE "N 10
then the fine will print a number in the range 100..109:

?PRINT SUM RANDOM :N 100
101

Chapter 2: Logo Grammar




g 191deyo

21 TO
22 END

Chapter 3: Defining Procedures With TO [1y













28 Editing Procedures With EDIT

29 Typing and Editing in the Editor
29 Moving the Cursor

30 inserting and Deleting Text

31 Getting Out of the Editor

31 Other Ways to Start Up the Editor

Chapter 4: Using the Logo Editor

y 4191deyo

[23°







The Logo Editor is an interactive screen-oriented text editor,
which provides a flexible way to define and change Logo

y 1@a1deyo

instructions. The main command for starting up the Logo Editor

is EDIT.
This chapter gives you
e information on how the Editor works

e the specifics of the EDIT command

the rules for typing and editing in the Editor

a brief description of other ways to start up the Editor.

Chapter 4: Using the Logo Editor

[o5






















321

36
36
37
37
38
38
38
39
40
40
41
41
42
43
43
43
44
45
45
46
47
47
47
48
48
49

Changing the Turtle's State
BACK
CLEARSCREEN
FORWARD
HIDETURTLE
HOME
LEFT
RIGHT
SETHEADING
SETPOS
SETX
SETY
SHOV. . JRTLE
Getting Information About the Turtle's State
HEADING
POS
SHOWNP
TOWARDS
XCOR
YCOR
Using the Pen and Screen
CLEAN
DOT
FENCE
FILL
PENDOWN

Chapter 5: Turtle Graphics

|



50 PENERASE
50 PENREVERSE

51 PENUP
51 SETBG
52 SETPC
53 WINDOW
53 WRAP

54 Getting Information About the Pen and Screen
54 BACKGROUND

54 DOTP

54 PEN

55 PENCOLOR

Chapter 5: Turtle Graphics

G layr1deyo

[33













CLEARSCREEN
CLEARSCREEN (CS) (command)

CLEARSCREEN erases the graphics screen, puts the turtle in
the center of the screen, and sets the turtle’s heading to 0
(north). The center of the screen is position [0 0] and is called
the home position.

S

FORWARD
FORWARD distance (FD) (command)
{3 t ot d B

direction in which it is heading. If the pen is down, Logo draws
a line the specified distance.

Examples:

FORWARD 70

TO SQUARE :SIDE
REPEAT 4 [FORWARD :SIDE RIGHT 901

END
L]

SQUARE 30

o>

Changing the Turtle’s State (37

—













Example:

SETPOS [100 01 moves the turtle  a point halfway down
the righl  ige of the screen.

Sl A

SETX

SETX xcor , (command)

SETX moves the turtle horizontally to a point with x-coordinate
xcor. The y-coordinate is unchanged. f the pen is down, Logo
draws a line to the new position.

Example:

SETX -50 moves the turtle horizontally over towards the left
edge of the sc :n. (The left edge of the screen is -140.)

[
A o &

L l

St X -50 DEIA £ ALUHR
SETY
SETY ycor {comn d)

SETY moves the turtle vertically to a point wi  y-coordinate
ycor. The x-coordinate is unchanged. If the pen is down, Logo
draws a line to the new position.

Changing the Turtle's State




4 A
A
SETY -50 SETY 2 * YCOR
SHOWTURTLE
SHOWTURTLE (8T {command)
See also section “HIDETURTLE.” SHOWTURTLE makes the turtle visible.

421

Example:

SETY -50 moves the turtle vertically towards the lower edge
of the screen. (The lower edge of the screen is -120 when the
aspect ratio is .8 .)

Chapter 5: Turtle Graphics

*—










TOWARDS
TOWARDS [xcor ycor] (operation)

TOWARDS outputs a heading that would make the turtle face in
the direction indicated by [xcor ycor].

Example:

SETHEADING TOWARDS [20 101 heads the turtle in the
direction of the position [20 10}.

XCOR
XCOR (operation)

XCOR outputs the x-coordinate of the current position of the
turtle.

Examples:

?PRINT XCOR
10.0

&

SETX 2 * XCOR moves the turtle horizontally to a position
twice as far from the y-axis as it used to be.

) _A

Getting Information About the Turtle's State [45

L










See also sections "WINDOW" and
W L

48]

Example:

DOT [120 01 puts a dot near the right edge of the screen.

f t

FENCE
FENCE (command)

The FENCE command fences in the turtle within the edges of
t H 1 4l

the screen, an error occurs and the turtle does not move. If the
turtle is already out of bounds, Logo repositions it at its home
position [0 0].

Example:

FENCE
CS

RT 5
FD 500

gives the error message TURTLE OUT OF BOUNDS.

FILL
FILL (command)

The FILL command fills the shape outlined by the current pen
color with the current pen color. If the turtie is not enclosed, the
background is filled with the current pen color. Logo ignores
lines of colors other than the current pen color when
determining what to fill.

Chapter 5: Turtle Graphics




Example:

TO FILLAT :POS

LOCAL "POSITION

MAKE "POSITION POS

PU SETPOS :POS PD FILL
PU SETPOS :POSITION PD
END

This procedure moves the turtle to a specified position, fills, and
returns the turtle to its original position.

L v |

REPEAT 4 PURT 45 FD 20 PD FILL

[FD 50 RT 90]

PENDOWN

PENDOWN (PD) (command)

The PENDOWN command puts the turtle’s pen down. When the
turtle moves, it draws lines in the current pen color. When you
start up Logo, the pen is down.

aE L

PENDOWN FD 100

Using the Pen and Screen [49







PENUP
PENUP (PU) (command)

The PENUP command lifts the pen up: when the turtle moves, it
does not draw lines. The turtle cannot draw until the pen is put
down again.

L L1,

PENUP FD 100

SETBG

SETBG colornumber (command)

The SETBG (for set background) command sets the
background color to the color represented by colornumber,
where colornumber is one of the following numbers:

black

white

green

violet

orange

blue

black (for black-and-white TV)

DU HEWN = O

Using the Pen and Screen [51




See the example included with the Note that background colors 0 and 6 are both black; 6 is the
BACKGROUND command. recommended background for a black-and-white screen, since
the pen draws thinner lines with a 6 background.

There are certain unavoidable limitations when you draw with a
colored pen on a colored background. Black and white pens
draw successfully on any background; any colored pen draws
successfully on a black or white background. If you try to draw
a green or violet line on an orange or blue background, or an
orange or blue line on a green or violet background, the
following will happen:

orange or blue background: green becomes orange
violet becomes blue

green or violet background: orange becomes green
blue becomes violet

If you change the background after you've already drawn with a
colored pen, the results may be blotchy.

SETPC colornumber (command)

The SETPC (for set nencolor) command sets the color of the
v )

numbers:

0 black
1 white
2 green
3 violet
4 orange
5 blue

521 Chapter 5: Turtle Graphics




For information on the interaction
between pen and background
colors, see section "SETBG" in this
chapter.

See also sections "FENCE"™ and
“WRAP."

See also sections "FENCE"™ and
"WINDOW."

If the pen color does not ook right on your screen, try adjusting
the tint control. However, when two lines of different colors are
horizontally close to each other, one of them may be the wrong
color, no matter what you do.

WINDOW
WINDOW (command)

The WINDOW command makes the turtle field unbounded; what
you see is a portion of the turtle field as if looking through a
small window around the center of the screen. When the turtle
moves beyond the visible bounds of the screen, it continues to
move but can’t be seen. The screen is 240 turtle steps high
(only if the scrunch factor is .8) and 280 steps wide. The entire
turtle field is 40,960 steps high and 32,768 steps wide.
Changing WINDOW to FENCE or WRAP when the turtle is off
the screen sends the turtle to its home position [0 0].

Example:

?WINDOW

?CS RT 5§

?FD 500

?PRINT PQS
43.5779 498.097

WRAP
WRAP (command)

The WRAP command makes the turtle field wrap around the
edges of the screen: if the turtle moves beyond one edge of the
screen, it continues from the opposite edge. The turtle never
leaves the visible bounds of the screen; when it tries to, it
wraps around to the other side.

Example:

?WRAP

?CS RT 5§

?FD 500

?PRINT POS
43.5779 18.0973

Using the Pen and Screen [53

























TO FLAVORCHART

TYPE “FLAVOR TAB TAB PR "RATING PR [!
]

TYPE "CHOCOLATE TAB PR 97

TYPE '"STRAWBERRY TAB PR 73

TYPE '"BANANA TAB TAB PR 19

[l NE oY

?FLAVORCHART

FLAVOR RATING

CHOCOLATE 97

STRAWBERRY 73

BANANA 19

FULLSCREEN

FULLSCREEN (FS) (command)

The FULLSCREEN command devotes the entire screen to
graphics. Only the turtle field shows; any text you type will be
invisible to you, although Logo will still carry out your
instructions.

if Logo needs to display an error message while you are using
the full graphics screen, Logo splits the screen.

SETCURSOR

SETCURSOR [columnnumber linenumber] (command)

SETCURSOR sets the cursor to the position indicated by
columnnumber and linenumber. Lines on the screen are
numbered from 0 to 23. Character positions (columns} are

Primitives Affecting Text on the Screen 61




See section "WIDTH."

62]

numbered from 0 to 39 if the screen width is 40 and 0 to 79 if
the screen width is 80.

23

An error occurs if the line number is not between 0 and 23, or if
the column number is not between 0 and: ( if the screen
width is 80). If columnnumber or linenumber is a decimal
number, Logo truncates it to an integer.

SETCURSOR [20 121 puts the cursor near the middle of the
screen.

TO MOV CU 50R :X :Y

SETCURSOR LIST :X + F. I CURS HA B
+ LAST CURSOF

END

?CLEARTEXT
?F INT A MOVECURSOR 2 5 PRINT "B

SETWIDTH width {command)

The SETWIDTH command sets the width of the screen to width
characters per line. The width input must have a value of

either 40 or 80. The default setting for the screen width
depends on which computer you're using. If you're using an
Apple lle, the default setting for the screen width is 40. If you're
using an Apple llc, the default setting is whatever the
80/40-column switch is set to.

Chapter 6: Text and Screen Commands







641

If you press (ConTROL »-(L) while in the Logo Editor, the graphics

screen appears. (Use (CONTROL )-(T) to restore the Editor text
screen.)

CONTROL-S
(coNTROL -(S) (special character)

(CoNTROL)-(S) is similar in effect to SPLITSCREEN. You can use
it at any time.

CONTROL-T
(CONTROL)-(T) (special character)

entire screen 10 text. You can use it at any time. (CONTROL)-(T)
restores the Editor text screen if you have just used

(conTRrOL )-(L) from the Editor.

Chapter 6: Text and Screen Commands




67 Words: Some General Information
68 Lists: Some General Information
69 Breaking Words and Lists into Pieces

70
71
71
73
73
74
75
76
76
77
78
78
80
81
81
82
83
85
85
87
88
88
89
90
90
90
91

BUTFIRST
BUTLAST
FIRST
ITEM
LAST
MEMBER

Putting Words and Lists Together

FPUT
LIST

LPUT
PARSE
SENTENCE
WORD

Examining Words and Lists

ASCII
BEFOREP
CHAR
COUNT
EMPTYP
EQUALP
LISTP
MEMBERP
NUMBERP
WORDP

Changing the Case of Words

LOWERCASE
UPPERCASE

Chapter 7: Words and Lists

/ J8a1deynon

[65













RSNV A,

See the section of this chapter on
the EMPTYP primitive for examples
of the empty list.

Element 1: 1

Element 2: [1 2]
[17 [17 2]]

Element 3:

The list [], a list with no elements, is the empty list.

The operations that break words and lists into pieces are

BUTFIRST (BF)
BUTLAST (BL)
FIRST

ITEM

LAST
MEMBER

The following chart shows how FIRST and BUTFIRST (BF)

work. If you want to try out these operations, use the SHOW

command.
FIRST

BF

FIRST

BF

FIRST

BF

FIRST

BF

FIRST
BF

LAST and BUTLAST (BL) work in the same way except that

"JOHN
"JOHN

[MARY JOHN
BILL]

[MARY JOHN
BILL]

[[MARY JOHN]
BILL]

[[MARY JOHN]
BILL]

[MARY [JOHN
BILI

[MARY [JOHN
BILL]]

[ Jor”

[ Jor”

they work on the last element.

Breaking Words and Lists Into Pieces

J
OHN
MARY

[JOHN BILL]

[MARY JOHN]

[BILL]

MARY

[[JOHN BILL]]

Error

Error

(69










Examples:

Operation Output
FIRST [HOUSE MOUSE HOUSE
LOUSE]

FIRST "HOUSE H
FIRST [HOUSE] HOUSE
Operation Output

FIRST [[THE A AN] [UNICORN [THE A AN]
RHINO] [SWIMS FLIES
GROWLS RUNS]]

FIRST ” Error

FIRST [ ] Error

TO PRINTDOWN :INPUT

IF EMPTYP :INPUT [STOP]
PR FIRST :INPUT
PRINTDOWN BF :INPUT
END

?PRINTDOWN "MOUSE

muncoX

?PRINTDOWN [A STRAWBERRY SUNDAE]
A

STRAWBERRY

SUNDAE

721 Chapter 7: Words and Lists




ITEM
ITEM integer object (operation)

ITEM outputs the element of object whose position within object
corresponds to inteaer. For example. if inteaer is 3, ITEM

VULPULD U1 Uiy cisiicii in uie uwjeut. vyect 1S a Woru or a
list. An error occurs if integer is greater than the length of
object or if object is the empty word or list.

Examples:

?MAKE "PETS [DOG CAT HAMSTER CANARY]
?PR ITEM 3 :PETS

HAMSTER

?PR ITEM 1 "APPLE

A

LAST
LAST object (operation)

LAST outputs the last element of object. LAST of the empty
word or the empty list is an error.

Examples:

Operation Output

LAST [SHARNEE MARIO RENAUD
RENAUD]

LAST "VANILLA A

LAST [VANILLA] VANILLA

LAST [[THE A] FLAVOR IS [VANILLA CHOCOLATE
[VANILLA CHOCOLATE STRAWBERRY]
STRAWBERRY]]

LAST ” Error

LAST [] Error

Breaking Words and Lists Into Pieces [73



TO PRINTBACK :INPUT

IF EMPTYP :INPUT [STOP]I
PR LAST :INPUT
PRINTBACK BL :INPUT
END

?PRINTBACK "GANDALF

O D>DZUOD>Drr M

MEMBER
MEMBER object? object? (operation)

MEME 77 outputs the part of object? in which object? is the
first element. If object? is not an element of object?, MEMBER
outputs the empty list or the empty word. This operation is
useful for accessing information in a file or for sorting long lists.

Examples:

?SHOW MEMBER ™A [A B C]
[A B Cl]

?SHOW MEMBER "Bugs [Learn Bugs Logol
[Bugs Logol

?SHOW MEMBER [Piaget Papert] [Children !
Computers [Teach Activityl [Piaget Pap!
ertl]

[[Piaget Papertl]

?PR MEMBER "ABC "XYZABCDEF
ABCDEF

741 Chapter 7: Words and Lists















Il Il L. B E m

Examples:

¢ :ration
SENTENCE "PAPER "BOOKS

SENTENCE [PAPER]
[BOOKS]

SENTENCE "APPLE [PEAR
PLUM BANANA]

SENTENCE [A QUICK
BROWN FOX] [LOOKS AT
THE LAZY FROG]

Output
[PAPER BOOKS]
[PAPER BOOKS]

[APPLE PEAR PLUM
BANANA]

[A QUICK BROWN FOX
LOOKS AT THE LAZY FROG]

The following procedure prints a birth announcement:

TO ANNOUNCE :FIRSTNAME

:LASTNAME

PR [WE“RE HAPPY TO ANNOUNCE THE BIRTH O!

F1l

PR (SE :FIRSTNAME *X.

PR [11 POUNDS 11 021
END

:LASTNAME)D

?ANNOUNCE "ERIC *"GEE\-SILVERMAN
WE’RE HAPPY TO AM JUNCE THE BIRTH OF

ERIC X. GEE-SILVERMAN

11 POUNDS 11 02

tl 'Exanm es:

sration

(SENTENCE "APPLE "PEAR
"BANANA)

(SENTENCE "MONET)
SENTENCE "MONET [ ]

Output
[APPLE PEAR BANANA]

[MONET]
[MONET]

When you give SENTENCE a single input, you need to put
parentheses around the expression. For example:

?MAKE "ANIMALS "KITTENS
?SHOW C(SENTENCE :ANIMALS)

[KITTENS]

Compare the outputs when SENTENCE and LIST are applied to

lists that contain other lists:

Putting Words and Lists Together

[79













Refer to Appendix F for a complete
list of the ASCII codes.

Try this:
MAKE "SORTLIST SORT [A D EF T C 21 [1]

PR :SORTLIST
ACDEFTZ

Then type

MAKE 'SORTLIST SORT [FOO BAR BAZ]1 :SOR!
TLIST

PR :SORTLIST

A BAR BAZ C D E F FOO T Z

CHAR
CHAR integer (operation)

The CHAR operation outputs the character whose ASCII code is
integer. An error occurs if integer is not the ASCII code for any
character.

Characters can be normal (white characters on black
background) or inverse video (black characters on white
background). The ASCII codes are organized as follows:

0-3 uppercase letters

32 - 47 punctuation

48 - 57 digits

58 - 63 punctuation

64 - 90 uppercase letters

91-96 punctuation

97 - 122 lowercase letters

123 - 127 punctuation

128 - 154 inverse-video uppercase letters
155 - 191 inverse-video digits and punctuation
192 - 218 special graphics characters
219 - 255 inverse-video lowercase letters

Examining Words and Lists [83







COUNT
COUNT object (operation)

COUNT outputs the number of elements in object, which is a
word or a list.

Examples:
Operation Output
COILINT 1A QUICK RROWN 4
(I W{U 1\
FOX]
COUNT [A [QUICK BROWN] 3
FOX]
COUNT "COMPUTER 8

?MAKE "CLASS [JOSE ANGELA WINIFRED LIN!
G NORBERT BRIAN MARIA]I

?PR COUNT :CLASS

7

The following procedure prints a random element of a word or a
list:

TO RANPICK :0BJECT
PR ITEM (1 + RANDOM COUNT :0BJECT) :0B!

JECT

END

?RANPICK :CLASS

- AN

EMPTYP

EMPTYP object (operation)

EMPTYP outputs TRUE if object is the empty word or the
empty list; otherwise it outputs FALSE.

Examining Words and Lists [85






See the list of infix-form operations
in Chapter 9.

EQUALP
EQUALP object? object2 (operation)

EQUALP outputs TRUE if object? and object2 are equal
numbers, identical words, or identical lists; otherwise EQUALP
outputs FALSE. This operation is equivalent to the equal sign

(=)

Examples:

Operation Output

EQUALP "RED FIRST [RED TRUE

YELLOW]

EQUALP 100 50 * 2 TRUE

EQUALP [THE A AN] [THE A] FALSE

EQUALP " [] FALSE (the empty word and

the empty list are not identical)

The following operation tells whether its first input (a character)
is an element of its second input (a word).

TO INP :CHAR :WORD

IF EMPTYP :WORD [OUTPUT "FALSE]

IF EQUALP :CHAR FIRST :WORD [OUTPUT *TR!
UE]

OUTPUT INP :CHAR BUTFIRST :WORD

END

?PR INP "A "TEACUP
TRUE
?PR INP ™I "SAUCER
FALSE

Examining Words and Lists l87







Operation

MEMBERP [FLORIDA
GEORGIA] [FLORIDA
GEORGIA IOWA]

MEMBERP BUTFIRST "FOG
[OE OF OG OH]

Output
FALSE

TRUE

The following procedure determines whether its input is a

vowel:
TO VOWELP :LETTER

OUTPUT MEMBERP :LETTER [A E I 0O U1l

END

?PR VOWELP ™F
FALSE
?PR VOWELP "“A
TRUE

NUMBERP
NUMBERP object

(operation)

NUMBERP outputs TRUE if object is a number; otherwise it

outputs FALSE.

Examples:

Operation
NUMBERP 3

2l

oo [3]

NUMBERP 3.14E23
NUMBERP ]

NUMBERP "

NUMBERP BUTFIRST 3165.2

NUMBERP BUTFIRST
[ELEPHANT]

Examining Words and Lists

Output
TRUE

TRUE
FALSE
FALSE
TRUE
FALSE

l89







Examples:

Operation Output
LOWERCASE "Hello hello
LOWERCASE "BIG big

TO YESP :WORD
IF EQUALP LOWERCASE :WORD '"yes [OP "™TRU!
E]l [OP "FALSE]

END

?PR YESP "™YES

TRUE

?PR YESP "“SEVEN

FALSE

UPPERCASE

UPPERCASE word (operation)

UPPERCASE outputs word in all uppercase letters.

Examples:

Operation Output
UPPERCASE "Hello HELLO
UPPERCASE ’little LITTLE

TO PRIMARYP :WORD
IF MEMBERP UPPERCASE :WORD [RED BLUE YE!

LLOW] [OP "TRUE1 [OP "FALSE]

END

?PR PRIMARYP "red
TRUE

?PR PRIMARYP '"green
FALSE

Changing the Case of Words f91







95
96
97
98
99
100
101
101

Variables: Some General Information
EDN

EDNS

LOCAL

MAKE

NAME

NAMEP

THING

Chapter 8: Variables

g 191deyo

EX}







|

For more information on variables,
see Chapter 2.

g 1a1deyo

This chapter gives you some general information about how
Logo uses variables and then provides descriptions of the
primitives that you use with variables. The primitives are

EDN
EDNS
LOCAL
MAKE
NAME
NAMEP
THING

A variable is a container that holds a Logo object. The
container has a name and a value. The object held in the
container is called the variable’s value. You create a variable in
one of two ways: either by using the MAKE or NAME
command, or by using procedure inputs.

Logo has two kinds of variables: local variables and global
variables. Variables used as procedure inputs are local to that
procedure. They exist only as long as the procedure is running,
and will disappear from your workspace after the procedure
stops running.

Normally a variable created by MAKE is a global variable. The
LOCAL command lets you change those variables into local

ST 77"'es. This 7 "avery et ifyco v Totto oot o tterir T
up your workspace with unwanted variables.

Variables: Some General Information @


















Examples:

?NAME 259 "JO0OB

?PR :J0B

259

?NAME "WELDER *"JOB
?PR :J0B

WELDER

NAME is equivalent to MAKE with the order of the inputs
reversed. Thus NAME "WELDER "JOB has the same effect as
MAKE "JOB "WELDER.

NAMEP word (operation)

NAMEP outputs TRUE if word has a value, that is, if :word
exists; it outputs FALSE otherwise.

Examples:

?PR NAMEP "ANIMAL

FALSE

?MAKE *“ANIMAL "AARDVARK
?PR :ANIMAL

AARDVARK

?PR NAMEP "ANIMAL

TRUE

The procedure INC, listed with the THING operation that
follows, shows a use of NAMEP.

THING name (operation)

THING outputs the thing in the container name, that is, the
value of the variable name. THING ™ANY is equivalent to
:ANY.

THING 101













" A B m E B B = B R m

6 4 81deyo

This chapter presents all the Logo operations that manipulate
numbers. Logo has two kinds of notation for expressing
arithmetic operations: prefix notation and infix notation. Prefix
nninhnq monne thm +he name nf thn nracediire comes hefare

e s

its inputs. W|th |nf|x notatlon the name of the procedure
goes between its inputs, not before them.

This chapter contains
® a general introduction to Logo's arithmetic operations
e descriptions of the prefix-form operations

e descriptions of the infix-form operations.

Logo has two kinds of numbers: integers and decimals.

3 is an integer
3.14 and 3. are decimal numbers

Logo provides primitives that let you add, subtract, multiply, and
divide numbers. You can find sines, cosines, arctangents, and
square roots; and you can test whether a number is equal to,
less than, or greater than another number.

Arithmetic Operations 105













Examples:

Operation Output
COS 60 0.5

COS 30 0.866026

Here is a definition of the tangent function:

TO TAN :ANGLE
OUTPUT (SIN :ANGLE)> / COS :ANGLE
END

?PR TAN 45
1.0

DIFFERENCE
DIFFERENCE number1 number2 (operation)

DIFFERENCE outputs the result of subtracting number2 from
number1.

Examples:

Operation Output

DIFFERENCE 7 1 6

DIFFERENCE (5+6) (3*7) -10

DIFFERENCE 10 5 5

DIFFERENCE 6.3 107.4 -1011

FORM

FORM number field precision (operation)

FORM outputs number as a word in the number of spaces
indicated by field, with precision digits after the decimal point.
The input for field must be an integer from 1 through 128. The
input for precision must be an integer from 0 through 6.

If number is too small to use the full field spaces, Logo adds
blank space before the number. Note that the decimal point (.)
and the minus sign (-) both count as an element in field.

Prefix-Form Operations 109









T2l

NOT A NUMBER
?PRINT INTP SQRT 50
FALSE

INTQUOTIENT
INTQUOTIENT integer? integer2 (operation)

INTQUOTIENT outputs the result of dividing integeri by
integer2, truncated to an integer. An error occurs if integer2
is 0. If either input is a decimal number, it is truncated.

Examples:

Operation ‘ Output

INTQUOTIENT 12 5 2

INTQUOTIENT -12 5 -2

INTQUOTIENT 9 2 4

INTQUOTIENT 3 0 Error

PRODUCT

PRODUCT numberi number2 (operation)

(PRODUCT numbert number2 number3 ...)

PRODUCT outputs the product of its inputs. It is equivalent to
the * infix-form operation. With one input, PRODUCT outputs its
input.

Examples:

Operation Output
PRODUCT 6 2 12
(PRODUCT 2 3 4) 24
PRODUCT 2.5 4 10.0

TO CUBE :NUM
0P (PRODUCT :NUM :NUM :NUM)
END

Chapter 9: Arithmetic Operations




?PR CUBE 2
8

QUOTIENT
QUOTIENT number1 number2

(operation)

QUOTIENT outputs the result of dividing number1 by number2.
It is equivalent to the / infix-form operation. Number2 must not

be 0. If it is, an error occurs.

Examples:

Operation

QUOTIENT 12 5
QUOTIENT -12 5
QUOTIENT 6 2.5
QUOTIENT 3.2 0

Output
2.4

2.4

Error

RANDOM
RANDOM integer

(operation)

RANDOM outputs a random non-negative integer less than

integer.

Example:

RANDOM 6 can output 0, 1, 2, 3, 4, or 5. The following
program simulates a roll of a six-sided die:

TO D6
OUTPUT 1 + RANDOM 6
END

?PR Db
3
?PR D6
S
?PR D6
3

Prefix-Form Operations

13












SQRT
SQRT number (operation)

The SQRT operation outputs the square root of number. The
value number must not be negative or an error will occur.

Examples:

Operation Output
SQRT 25 5.0
SQRT 259 16.0935

The following procedure outputs the distance from the turtle’'s
position to HOME.

TO FROM.HOME
OP SQRT SuMm XCOR * XCOR YCOR * YCOR
END

The procedure DISTANCE takes any two positions as inputs,
and outputs the distance between them:

TO DISTANCE :P0S1 :P0OS2

OP SQRT SUM S@ C(CFIRST :P0S1) - FIRST :!
POS2) SQ@ (C(LAST :POS1) - LAST :POS2

END

TO SQ :N

OP :N * =:N

END

?PR DISTANCE [-70 101 [50 601
130.0

SUM

SUM numberl number2 (operation)
(SUM number1 number2 number3 ...)

The SUM operation outputs the sum of its inputs. SUM is

equivalent to the + infix-form operation.

With one input, SUM outputs its input.

Prefix-Form Operations 117













The BEFOREP operation is
described in Chapter 7.

The procedure FACTORIAL outputs the factorial of its input. For
example, FACTORIAL 5 outputs the product of 5 *4 *3*2 * 1.

TO FACTORIAL :N
IF :N = 0 [0OP 11 [OP :N * FACTORIAL :N-11
END

?PR FACTORIAL 4
24
?PR FACTORIAL 1
1

Division Sign

number1 | number2 (infix-form operation)

The slash (/Y outnuts niumbert divided bv number2. 1t is the

TR oper. Ni ! ISt NOt be
Examples:

Operation Output

6/3 2.0

8/3 2.66667

25/38 0.657895

0/7 0.0

7/0 Error

Less Than Sign

numberl < number2 (infix-form operation)

The less than sign (<) outputs TRUE if number1 is less than
numberZ; otherwise it outputs FALSE. it is similar to the
BEFOREP operation but takes only numbers as inputs.

Examples:

Operation Output
2 <3 TRUE
-7 < -10 FALSE

Infix-Form Operations 121













W a6 B - B hB BB B B EEE e .

0L 41@1deyo

This chapter presents the primitives and special control
characters that you use to change Logo’s normal way of
executing a procedure. The primitives and special characters
appear in five groups:

e primitives called conditionals that tell Logo to carry out
different instructions, depending on whether a condition is
met

e primitives that interrupt a procedure before it has finished
executing

e primitives that tell Logo to repeat instructions a certain
number of times or to jump or transfer control to some other
instruction

® primitives for debugging programs

® special control characters that interrupt Logo’s flow of
control, either temporarily or permanently.

Logo reads procedure definitions line by line, following the
instructions given in each line. If a procedure contains a
subprocedure, Logo reads the lines of the subprocedure before
continuing in the superprocedure. Flow of control refers to
the order in which Logo follows instructions. There are times
when you want to alter Logo’s normal flow of control. You can
do so with any of these methods:

Conditionals tell Logo to do one thing if such-and-such is
true; otherwise, do something else.

Flow of Control 25






See section "TEST.”

IF as a command:

TO DECIDE

IF 0 = RANDOM 2 [OP ™YES]I
OP 'NO

END

TO DECIDE
IF 0 = RANDOM 2 [OP '"YESI [OP '"NO1
END

IF as an operation:

TO DECIDE
OUTPUT IF 0 = RANDOM 2 ["™YES] ["NOI
END

IFFALSE
IFFALSE list (IFF) (command)

IFFALSE runs /ist if the result of the most recent TEST was
FALSE, otherwise it does nothing. Note that if TEST has not
been run in the same procedure or a superprocedure, or from
top level, IFFALSE does nothing.

Example:

TO QUIZ

PRINT [WHAT IS THE CAPITAL OF NEW JE!
RSEY?1]

TEST "TRENTON = UPPERCASE READWORD
IFTRUE [PRINT "CORRECT!]

IFFALSE [PRINT "WRONG]

END
?QUIZ
WHAT IS THE CAPITAL OF NEW JERSEY?

NEWARK
WRONG

Using Conditionals 127










130

co

CO (command)

The CO (for continue) command resumes running of a

procedure after a PAUSE or (CONTROL)(Z), continuing from
wherever the procedure paused.

ouTPUT
OUTPUT object (OP) (command)

The OUTPUT command is meaningful only when it is within a

procedure, not at top level. It makes object the output of your

procedure and returns control to the caller. Note that although
OUTPUT is itself a command, the procedure containing it is an
operation because it has an output. Compare with STOP.

Examples:

TO MARK.TWAIN
OUTPUT [SAMUEL CLEMENS]
END

?PR SE MARK.TWAIN [IS A GREAT AUTHORI
SAMUEL CLEMENS IS A GREAT AUTHOR

WHICH outputs the position of an element in a list:

TO WHICH :MEMBER :LIST

IF NOT MEMBERP :MEMBER :LIST [OUTPUT 01
IF :MEMBER = FIRST :LIST [OUTPUT 11
OUTPUT 1 + WHICH :MEMBER BF :LIST

END

?MAKE "VOWELS [A E I O Ul>
?PR WHICH "™E :VOWELS

2
?PR WHICH "U :VOWELS
5
7PR WHICH "W :VOWELS
0

Chapter 10: Conditionals and Flow of Control






















See section “GO."

Example:

TO COUNTDOWN :N
LABEL 'LOOP

IF :N ¢ 0 [STQOPI
PRINT :N

MAKE "N :N - 1
GO 'Loaor

END

LABEL
LABEL word (command)

The LABEL command itself does nothing. However, a GO word
passes control to the instruction following it. Note that word
must always be a literal word (that is, it must be preceded by a
quotation mark).

REPEAT
REPEAT integer list (command)

REPEAT runs list integer times. An error occurs if integer is
negative.

Examples:

REPEAT 4 [FD 100 RT 901 draws a square 100 turtle
steps on a side.

REPEAT 3 [FD 100 RT 901 draws three quarters of a
square.

0 U‘

I Hy woniu vl iy n J 1917










See section “CATCH.”

1401

SQUARE 100
RUN (SE :SAVETYPE)
END

TO SQUARE :LEN
REPEAT 4 [FD :LEN RT 901
END

?SHOW PEN
PENUP
?SAFE.SQUARE
?SHOW PEN
PENUP

RUN READLIST runs any commands you type in.
PRINT RUN READLIST prints the output from any
expression you typed in.

THROW
THROW name (command)

The THROW command is meaningful only within the range of
the CATCH command. An error occurs if no corresponding
CATCH name is found.

THROW "TOPLEVEL returns control to top level. Contrast with
STOP.

You use the primitives in this section to analyze and debug
programs. The primitives are

STEP
TRACE
UNSTEP
UNTRACE

Chapter 10: Conditionals and Flow of Control



STEP

STEP name(list) (command)

The STEP command takes the procedure indicated by name(list)
as input and lets you run them line by line. STEP pauses at
each line of execution and continues only when you press any
key on the keyboard.

Examples:

TO TRIANGLE :WORD

IF EMPTYP :WORD [STOPI
PR :WORD

TRIANGLE BL :WORD

END

?STEP "TRIANGLE
?TRIANGLE "IT

IF EMPTYP :WORD You press any key.
[STOP]

PR :WORD You press any key.
IT

TRIANGLE BL :WORD You press any key.
IF EMPTYP :WORD You press any key.
[STOP]

PR :WORD You press any key.
I

TRIANGLE BL :WORD You press any key.
IF EMPTYP :WORD You press any key.
[STOP]

?

TRACE

TRACE name(list) (command)

The TRACE command takes the procedures indicated by
name(list) as input and causes them to print tracing information
when executed. It does not interrupt the execution of the
procedure, but allows you to see the depth of the procedure

Debugging Programs [141












Control

148 COPYDEF
148 DEFINE
150 DEFINEDP
150 PRIMITIVEP
151 TEXT

Chapter 11: Modifying Procedures

L L le1deyo

[145












TO LEARN

MAKE *PRO [[1]

READLINES

PR [DO YOU WANT TO SAVE THIS AS THE DEF!
INITIC OF A PROCE URE?]

TES®™ FIRST FIRST READLIST)= "Y

IFT [TYPE [PROCEDL I NAME?] DEF: I FIRS!
T READLIST :PRO]
END

TO READLINES

MAKE *NE TLINE READLIST

IF :NEXTLINE = [END] [STOP]

TEST :NEXTLINE = [ERASE]

IFTRUE [CANCEL]

IFFALSE [RUN :NEXTLINE MAF ™PRO LPUT :!
NEXTL: I :PROI

READL: =S

END

TO CANCEL

PR SE [I WILL ERASE L! :1 LAST :PRO
P " BL :PRO

3

?LEAF

FD 20

RT 36

ERASE

I WILL ERASE LINE RT 36
RT 72

END

DO YOU WANT TO SAVE THIS AS THE DEFINIT!
ION OF A PROCEDURE?

YES

PROCEDURE NAME?LEG

DEFINE 149




150

?7PO0 "LEG
TO LEG
FD 20

RT 72
END

DEFINEDP word (operation)

DEFINEP outputs TRUE if word is the name of a user-defined
procedure, FALSE otherwise.

PRIMITIVEP name (operation)

PRIMITIVEP outputs TRUE if name is the name of a primitive,
FALSE otherwise.

Examples:

Operation Output
PRIMITIVEP "FORWARD TRUE
PRIMITIVEP "SQUARE FALSE

Chapter 11: Modifying Procedures










TO SHOWLINES :INSTRUCTIONS

IF EMPTYP :INSTRUCTIONS [STOP]

MAKE '"NEWDEF LPUT C(LIST "TYPE FIRST :IN!
STRUCTIONS) :NEWDEF

MAKE *NEWDEF LPUT [STEPPERI :NEWDEF

MAKE *NEWDEF LPUT FIRST :INSTRUCTIONS :!
NEWDEF

SHOWLINES BF :INSTRUCTIONS

END

TO SHOWINPUTS :ARGLIST

IF EMPTYP :ARGLIST [STOPI

MAKE *"NEWDEF LPUT C(LIST "PRINT "SENTENC!
E (LIST (FIRST :ARGLIST) "IS) (WORD '":!
FIRST :ARGLIST)) :NEWDEF

SHOWINPUTS BF :ARGLIST

END

TO S$UNSTEP :PRO

COPYDEF WORD ™. :PRO :PROD
ERASE WORD *". :PRO

END

TEXT

153













" 4 2 =l

- B B N

Predicates are operations that
output only TRUE or FALSE. Most
of their names end in P.

191deyo

AN

This chapter describes the logical operations AND, NOT, and
OR. A logical operation is a predicate whose input must be

either TRUE or FALSE.

The inputs to logical operations are usually other predicates.
Predicates are found throughout the other chapters of this

manual:

Predicate

BEFOREP
BUTTONP
DEFINEDP
DOTP
EMPTYP
EQUALP
FILEP
KEYP
LISTP

3R
NAMEP
NUMBERP
PRIMITIVEP
SHOWNP
WORDP

<

>

Chapter 12: Logical Operations

Chapter

7
13
11
5
7
7
15
13
7

—

O W ONO = o

157




AND predicatei predicate2 (operation)
(AND predicatel predicate2 predicate3 ...)

AND outputs TRUE if all its inputs are true, FALSE otherwise.

Examples:

Operation Output
AND "TRUE "TRUE TRUE
AND "TRUE "FALSE FALSE
AND "FALSE "FALSE FALSE
(AND "TRUE "TRUE "FALSE FALSE
"TRUE)

AND 57 Error
AND PENCOLOR=1 FALSE

BACKGROUND=0
(when you start up Logo)

The following procedure, DECIMALP, tells whether its input is a
decimal number:

TO DECIMALP :0BJ

OUTPUT AND NUMBERP :0BJ MEMBERP '. :0BJ
END

?PR DECIMALP 17

FALSE

?PR DECIMALP 17.

TRUE

?PR DECIMALP "STOP.

FALSE

The following procedure tells you whether the temperature is
comfortable (between 50 and 90 degrees F):

TO COMFORT

IF AND :TEMPERATURE > 50 :TEMPERATURE <!
90 [PR ™DELIGHTFULI [PR "UNPLEASANT]
END

Chapter 12: Logical Operations






OR predicatel predicate2 (operation)
(OR predicatel predicate2 predicated ...)

OR outputs FALSE if all its inputs are false; otherwise it outputs

TRUE.

Examples:

Operation Output
OR "TRUE "TRUE TRUE
OR "TRUE "FALSE TRUE
OR "FALSE "FALSE FALSE
(OR "FALSE "FALSE "FALSE TRUE
"TRUE)

ORS57 Error

The procedure MOUNTAINS draws mountains:

TO MOUNTAINS
SETPC §

RT 45

FD S5
SUBMOUNTAIN
END

TO SUBMOUNTAIN

FD S5 + RANDOM 10

IF OR YCOR > 50 YCOR < 0 [SETHEADING 1!
80-HEADING]

SUBMOUNTAIN

END

U

Chapter 12: Logical Operations



163
163
164
164
164
165
166
167
167
168
169
170
170
171

Using Paddles
BUTTONP
PADDLE
Making Logo Read Information
KEYP
READCHAR
READCHARS
READLIST
READWORD
Making Logo Write Information
PRINT
SHOW
TYPE
Making Sounds With TOOT

Chapter 13: The Outside World

1e1deyo

eI

61






m Em Em E B EE I E .

loai1deyo

e}

This chapter describes primitives for communicating with
various devices through the computer. The devices include the
keyboard, the television set, and the game paddles. The

rm N e

® primitives for using paddles

e primitives for making Logo read information

® primitives for making Logo write information

® a primitive for making sounds.

This section describes the BUTTONP and PADDLE primitives,
which communicate information from the paddie, or hand
control.

BUTTONP
BUTTONP paddienumber (operation)

BUTTONP outputs TRUE if the button on the specified paddle
is down and FALSE if the button is up. The paddlenumber must
be 0, 1, 2 OR 3. (&) is button 0 and (&) is button 1.

Using Paddles 163



READCHAR, READCHARS,
READLIST, and READWORD are
also used in connection with the
file-handling system described in
Chapters 15 and 16.

164

PADDLE
PADDLE paddlenumber (operation)

PADDLE outputs a number between 0 and 255, representing
the rotation of the dial on the specified paddle.

Example:

TO PDRAW

RIGHT (PADDLE 0) / 25.6
FORWARD (PADDLE 1) / 25.6
PDRAW

END

This section presents the primitives that you use to make Logo
read information from a device or a file. Normally, this device is
the keyboard. The primitives are

KEYP
READCHAR
READCHARS
READLIST
READWORD

The operations READCHAR, READCHARS, READLIST, and
READWORD let Logo read text that has been typed into the
keyboard. KEYP is a keyboard predicate mainly useful in game
situations.

KEYP
KEYP (operation)

KEYP outputs TRUE if there is at least one character waiting to
be read—that is, one that has been typed on the keyboard and
not yet picked up by READCHAR or READLIST. KEYP outputs
FALSE if there are no such characters.

Chapter 13: The Outside World




See also section "KEYP.”

Example:

TO STEER

FD 2

IF KEYP [TURN READCHAR]
STEER

END

TO TURN :DIR

IF :DIR = "R [RT 101
IF :DIR = "L [LT 101
END

READCHAR
READCHAR (RC) (operation)

READCHAR outputs the first character typed at the keyboard or
read from the current file. If you are reading from the keyboard
and no character is waiting to be read, READCHAR waits until
you type something.

READCHAR does not output a character if you are reading from
a file and the end-of-file position is reached. In this case,
READCHAR outputs an empty list. Note that READCHAR from
the keyboard does not echo what you type on the screen.

If you are reading from the keyboard, you can set the high bit
of the character being read by holding down either Apple key as
you type the character. Setting the high bit adds 128 to the
character.

The foliowing procedure, XYZZY, lets you run certain
commands with a single keystroke: does FORWARD 5, and
(R) does RIGHT 10. (You can add to the list.) You need not
press after the keystroke.

TO XYzzY

INTERPRET READCHAR

Xxyzzy

END

TO INTERPRET :CHAR

IF :CHAR = "F [FD 5]

IF :CHAR = "R [RT 101

IF :CHAR = "S [THROW "TOPLEVEL]
END

Making Logo Read Information [165






READLIST
READLIST (RL) (operation)

The READLIST operation reads a line of information from the
current file and outputs the information in the form of a list.
Normally, the source is the keyboard, where you type in
information followed by a carriage return. This information is
echoed on the screen. The command SETREAD allows you to
read from other files.

If you are reading from a file where the end-of-file position has
already been reached, READLIST outputs the empty word.

Examples:

?PRINT COUNT READLIST
I HOPE THIS REALLY WORKS
S

TO GET.USER

PRINT [WHAT IS YOUR NAME?]

MAKE "USER READLIST

PRINT SE [WELCOME TO LOGO,] :USER
END

?GET.USER

WHAT IS YOUR NAME?

EFFIE

WELCOME TO LOGO, EFFIE
?GET.USER

WHAT IS YOUR NAME?

EFFIE MANIATIS

WELCOME TO LOGO, EFFIE MANIATIS

READWORD
READWORD (RW) (operation)

READWORD reads a line of information from the current file
and outputs it as a word. Normally, the source is the keyboard,
and READWORD waits for you to type and press (RETURN).
What you type is echoed on the screen. If you press
before typing a word, READWORD outputs an empty word.

Making Logo Read Information 167



See sections “READLIST,
READCHAR, READCHARS,” and
“SETREAD.”

168]

If you use READWORD from a file, READWORD reads
characters until it reaches a carriage return, and outputs those
characters as a word. The next character to be read is the one
after the carriage return. When the end-of-file position is
reached, READWORD outputs an empty list.

Examples:

?SHOW READWORD
LONDON ONTARID
LONDON ONTARID

?PRINT COUNT READWORD
THERE IS SOME VALUE IN COUNTING WORDS
37

The following procedure asks your age and then prints how old
you will be next year.

TO AGE

PRINT [HOW OLD ARE YOU?]
PRINT MESSAGE READWORD
END

TO MESSAGE :AGE
OP SE [NEXT YEAR YOU WILL BE] :AGE + 1
END

?AGE

HOW OLD ARE YOU?

11

NEXT YEAR YOU WILL BE 12

?AGE

HOW OLD ARE YOU?

35

NEXT YEAR YOU WILL BE 36

This section presents the primitives that you use to make Logo
write information to a destination such as the screen. The
primitives are

PRINT
SHOW
TYPE

Chapter 13: The Outside World




PRINT

PRINT object (PR) (command)
(PRINT object1 object2 ...)

The PRINT command prints its inputs followed by a carriage
return on the screen, unless the destination has been changed
by SETWRITE. The outermost brackets of lists are not printed.
Compare with TYPE and SHOW.

Examples:

?PRINT "“A
A
?PRINT *A PRINT [A B Cl

ABC

-~

TO REPRINT :MESSAGE :HOWMANY
IF :HOWMANY < 1 [STOPI

PR :MESSAGE

PR

REPRINT :MESSAGE :HOWMANY-1
END

?REPRINT [(TODAY IS FRIDAY!]1 4
TODAY IS FRIDAY!

TODAY IS FRIDAY!
TODAY IS FRIDAY!
TODAY IS FRIDAY!

?

Making Logo Write Information 169









Table 13-1. Note Frequencies for TOOT .
Note Frequency, by Octave .
B 62 123 247 494 988 1973 3946
A# 58 117 233 466 932 1864 3743 .
A 55 110 220 440 881 1761 3510
G# 52 104 208 415 830 1663 3327 .
G 49 98 196 392 784 1566 3142
F# 46 92 185 370 740 1480 2959 .
44 87 175 349 698 1398 2797
E 41 82 165 330 659 1319 2637 .
D# 39 78 156 311 622 1244 2495 4990
D 37 73 147 294 587 1176 2346 4713 .
C# 35 69 139 277 554 1109 2213 4426
C 33 65 131 262 523 1047 2095 4172 .
Middle C
i
i
i
i
i
i
]
i
1721 Chapter 13: The QOutside World .




176
176
177
177
177
178
178
179
179
180
180
180
181
181
181
181
182
182
182
183
183
184
184
185

Sizing Up Your Workspace
NODES
RECYCLE
Printing From the Workspace
PO
POALL
PON
PONS
POPS
POT
POTS
Erasing From the Workspace
ERALL
ERASE
ERN
ERNS
ERPS
Cleaning and Organizing the Workspace
BURY
BURYALL
BURYNAME
UNBURY
UNBURYALL
UNBURYNAME

Chapter 14: Managing Your Workspace

Je1deyo

v

73






See Chapters 15 and 16 for
information on files.

191deyo

vl

This chapter tells you how to manage the workspace in your
Apple computer. Workspace is an area of the Apple’s memory
where Logo keeps your procedures, variables, and properties
that it knows about right now. It does not include primitives.

Logo provides primitives to let you

® examine the size of your workspace and free up additional
space there

® see what you have in your workspace

® selectively erase variables and procedures from your
workspace

® clean up and organize your workspace.

The workspace is a temporary storage space. Your procedures,
variables, and properties will be erased when you turn off the
power of the computer. If you want to keep them for future use,
you must store them on a disk in the form of files.

Procedures and names in the workspace can be buried, making
them invisible to global commands such as ERALL, ERPS,
POALL, POPS, POTS, and SAVE. A buried procedure or name
still exists in the workspace. Therefore, you can run, edit, print

It . _ i ] y i
name.

The bury facility is useful for organizing your workspace. You
can use it to selectively save procedures in different files. You
can also use the bury facility to make procedures appear as
primitives. For instance, you may want some of the procedures
in Appendix B, Useful Tools, to be buried in the workspace.

Chapter 14: Managing Your Workspace 175















See section "BURY" for
exceptions.

180

POT
POT name(list) (command)

The POT (for print out title} command prints the title line of the
named procedure(s) in the workspace.

Example:

You may want to group some procedures by giving them a
variable name:

?MAKE "LANGUAGE [SENGEN PICK]
To find out the titles in the LANGUAGE variable, use POT.

?PAT :LANGUAGE
TO SENGEN :NOUNS :VERBS
TO PICK :0BJECT

POTS
POTS (command)

POTS (for print out titles) prints the title line of every procedure
in the workspace.

Examples:

?POTS

TO POLY :SIDE :ANGLE

TO LENGTH :0BJ

TO GREET

TO SPI :SIDE :ANGLE :INC

This section tells you how to erase information from the
workspace. The primitives for doing this are

ERALL
ERASE
ERN
ERNS
ERPS

Chapter 14: Managing Your Workspace




See section "BURY" for
exceptions.

See the example using NOUNS
and VERBS at the beginning of this

chapter.

See section "BURY" for
exceptions.

ERALL
ERALL (command)

ERALL erases all procedures, variables, and properties from the
workspace.

ERASE
ERASE name(/ist) (ER) (command)

The ERASE command erases the named procedure(s) from the
workspace.

Examples:

ERASE "TRIANGLE erases the TRIANGLE procedure.
ERASE [TRIANGLE SQUARE] erases the TRIANGLE and
SQUARE procedures.

ERN
ERN name(list) (command)

The ERN (for erase name) command erases the named
variable(s) from the workspace.

Examples:
ERN '"LENGTH erases the LENGTH variable.
gl al \
ERNS
ERNS (command)

ERNS (for erase names) erases all variables from the
workspace.

Erasing From the Workspace [181



See section "BURY" for
exceptions.

182

ERPS
ERPS (command)

The ERPS (for erase procedures) command erases all
procedures from the workspace.

This section discusses the primitives that you use to manage
your workspace effectively. The primitives for doing this are

BURY
BURYALL
BURYNAME

Livoondd
UNBURYALL
UNBURYNAME

BURY
BURY name(list) (command)

The BURY command buries the procedure(s) in its input.
Certain commands (ERALL, ERPS, POALL, POPS, POTS, and
SAVE) act on everything in the workspace except procedures
and names that are buried.

Example:

SAVE "GOODSTUFF saves the whole workspace in the file
GOODSTUFF except procedures and names that are buried.

Chapter 14: Managing Your Workspace




See section "UNBURYALL" for
unburying everything in the
workspace.

See section "UNBURYNAME" to
unbury variables.

BURYALL
BURYALL (command)

The BURYALL command buries all the procedures and variable
names in the workspace.

Example:

?7POTS

TO POLY :SIDE :ANGLE
TO LENGTH :0BJ

TO GREET

TO SPI :SIDE :ANGLE :INC
?PONS

MAKE *"ANIMAL "AARDVARK
MAKE "LENGTH 3.98

MAKE "MYNAME '"STEVE
?BURYALL

?POTS

?PONS

?

Once BURYALL is run, there are no procedure titles or names
visible.

BURYNAME
BURYNAME name(list) {command)

BURYNAME buries the variable name(s) in its input.
Example:

?PONS

MAKE *ANIMAL "AARDVARK
MAKE "LENGTH 3.98

MAKE "MYNAME “STEVE
?BURYNAME *"MYNAME
?PONS

MAKE "ANIMAL "AARDVARK

e WLELLSNL, 303

Cleaning and Organizing the Workspace [183






UNBURYNAME
UNBURYNAME name(list) (command)

UNBURYNAME unburies the variable name(s) in its input.
Example:

?PONS

?

There are no variables visible.

?UNBURYNAME [LENGTH NOUNS]

?PONS

MAKE '"LENGTH 3.98

MAKE '"NOUNS [COMPUTERS HOUSES BEDS CHAI!
RS TV STEREO]

Cleaning and Organizing the Workspace Moo















190

Although the nature of the files may be different, they are all
organized on the disk in a similar manner. The next section
explains how files are organized by ProDOS—the operating
system under which Logo runs.

Disk Formatting and Volume Names

Every disk must be formatted for use. The formatting process
prepares a disk in three ways:

e |t divides the disk surface into uniform areas, called blocks,
where ProDOS stores information.

e |t gives the disk a volume name that you select.

e |t writes a volume directory and other information that
ProDOS needs to locate files.

You must format all disks before using them to store any
information.

A volume is a formatted disk on which you keep files of
information. Every volume has a name. Here are some
examples of volume names:

Volume Might Be Used for

Name

/{LOGO/ The disk you use to start up Logo
IMY s/ A disk containing your work

/LOGO.SAMP-  The fictitious disk used for the examples in
LES/ this chapter

You use volume names to tell Logo where to find the file you
want to get or where to put the file you want to save.

Disk Organization

Files can be saved on disk in various ways. To get a listing of
which files are on your disk, you use the CATALOG command.
This listing of the names and sizes of files is called a
directory. Whenever you try to open a file, ProDOS checks
the volume directory to find the file on the disk.

The disk volume MYDISK includes the following directory.

Chapter 15: General File Management
















?SETPREFIX "PICTURES
?CATALOG

To see what is in the subdirectory PICTURES:

/L0GO.SAMPL ES/PROGRAMS/PICTURES/ (current ProDOS prefix)
POLYS 2 (filename)
BEAR 3 (filename)

Blocks Free: 138 Bloc

ks Used: 142

?SETPREFIX */LOGO.SAMPLES/DATA/RECORDS

?CATALOG

/L0GO.SAMPLES/DATA/RE
ADDRESS 10
PHONELIST 15

Blocks Free: 138 Bloc
q

CORDS/
(filename)
(filename)
ks Used: 142
CREATEDIR
CREATEDIR pathname (command)

CREATEDIR creates the subdirectory indicated by pathname.
The last file name in pathname is the subdirectory to be
created, and preceding names indicate where it should be
placed.

Examples:
?7CREATEDIR "/L0OGO.SAMPLES/PROGRAMS/TOOLS

creates the subdirectory TOOLS in the subdirectory
PROGRAMS. If the ProDOS prefix is already set to
/LOGO.SAMPLES/PROGRAMS/, then

?CREATEDIR "TOOLS

has the same effect.

General File System Primitives 195















200

To access files in the root directory,

?SETPREFIX *"/L0OGO.SAMPLES
?CATALOG
/L0OGO.SAMPLES/

PROGRAMS/

PICTURES/

DATA/

Blocks Free: 138 Blocks Used:

?

Chapter 15: General File Management

142










e - IR

221 A Sample Project Using the Data File System
222 Step 1: Creating a Data File

224 Step 2: Retrieving Information

225 Step 3: Changing Information

Chapter 16: Managing Various Files

Jo91deyo

91

203









206

Some file primitives work with both files on disks and devices
like printers. In this chapter, the input term file represents inputs
of this kind. The devices are accessed through the port or slot
number to which they are attached. The most common device
you will access this way is a printer. A printer attached to port 1
or slot 1 would be accessed by the number 1.

This section tells you how to save and load files containing
Logo programs. The primitives you use to do this are

LOAD
SAVE
SAVEL

LOAD
LOAD pathname (command)

The LOAD command |
pathname into the wor
top level. An error occ
occurs if you try to loa

After Logo loads the cc
called STARTUP. If or

Examples:

?SETPREFIX '"/PR
?LOAD "BEAR

Logo reads everything

SAVE
SAVE pathname

The SAVE command ci
nrocedires and variabl
I r

Chapter 16: Managing '









This section describes the two primitives that you use to record
the interactions between you and the Apple computer. The
primitives are DRIBBLE and NODRIBBLE.

DRIBBLE
DRIBBLE file (command)

DRIBBLE starts the process of sending a copy of the
characters displayed on the text screen to file. DRIBBLE
records interactions between the Apple computer and the
person at the keyboard. DRIBBLE automatically opens file.
NODRIBBLE stops the process of dribbling.

You cannot use SETREAD or SETWRITE with a dribble file
while still dribbling. However, once a dribble file on disk has
been closed with NODRIBBLE, you can treat it like any other
file. You can then open it, read from it, or write to it.

Note that only one dribble file can be open at one time.
Examples:
?DRIBBLE /DATA/RECORDS/JUNE1.DRIB

creates a file called JUNE1.DRIB and starts the dribbling
process. Every line appearing after DR~ 3l ~ is sent to this file.

?CS

?FD 100
?RT 80

?FD 50
?NODRIBBLE

Working With Dribble Files 209



210

DRIBBLE can be used to print the contents of a file to the

printer.

TO DUMP :FILE
DRIBBLE 1
POFILE :FILE
NODRIBBLE

END

NODRIBBLE
NODRIBBLE

(command)

NODRIBBLE turns off the dribble feature so a copy of the
characters from the screen will no longer be sent to the file or

device named previously by the DRIBBLE command.

=xamples:

?DRIBBLE "/LOGO.SAMPLES/DATA/RECORDS/CL!

ASS.DRIB

creates a file called CLASS.DRIB and starts the dribbling

process.

?REPEAT 5 [PR RANDOM 101

N wWwwo o

?NODRIBBLE

Everything put on the text screen after the DRIBBLE line is sent

to the file CLASS.DRIB. Now, if you print out the file
CLASS.DRIB, you will see what you just typed.

?POFILE "/L0OGO.SAMPLES/DATA/RECORDS/CLA!

SS.DRIB

?REPEAT 5 [PR RANDOM 101

D2hWwWwo

?NODRIBBLE

Chapter 16: Managing Various Files




This section gives you information about
e reading and writing information in data files
® opening and closing data files

e the primitives that work with data files.

Reading and Writing Information

With Logo’s file system, there is always a current file open for

reading, called the reader, and a current file open for writing,

called the writer. When you start up Logo, Logo assumes that
the current reader is the keyboard and the current writer is the
screen. You can change the current reader and writer files with
the SETREAD and SETWRITE commands, which are described
later in this chapter.

When the current reader or writer is a file on disk, there are
current positions in the file where Logo will start reading or
writing. For example, when Logo opens a file, it is ready to read
from the beginning of the file and write at the end. You can
change the read and write positions with the SETREADPOS and
SETWRITEPOS commands, which are described later in this
chapter.

Opening Files

You must open a file or device with the OPEN command before
you can read from it or write to it. Only one device can be open
at a time although you can open as many as six files. So, if a
device is currently open, you cannot use a primitive that
automatically opens and closes devices. For example, you
cannot use the DRIBBLE command for a printer in slot 1 or
port 1 if slot 2 or port 2 is already open.

The data file primitives are

ALLOPEN READER SETWRITE
CLOSE READPOS SETWRITEPOS
CLOSEALL SETREAD WRITEPOS
FILELEN SETREADPOS WRITER

OPEN

Working With Data Files 21






See section “NODRIBBLE" for
closing dribble files.

Examples:
?CLOSE *"/LOGO.SAMPLES/DATA/PHONELIST
closes the file called PHONELIST.

The STORE procedure opens a file, sends data to it, and closes
the file.

TO STORE :FILE :DATA
OPEN :FILE

SETWRITE :FILE

PRINT :DATA

SETWRITE I[1

CLOSE :FILE

END

?STORE "/L0OGO.SAMPLES/DATA/PHONELIST [B!
ARBARA: 765-42011

The name and telephone number are written to the file called
PHONELIST.

CLOSEALL
CLOSEALL (command)

The CLOSEALL command closes all files and devices that are
currently open. Dribble files are not closed with CLOSEALL.

Use the OPEN and CLOSE commands to open and close one
file at a time. If you try to use CLOSEALL when no files or
device are open, it is ignored.

?0PEN 1
?0PEN */L0OGO.SAMPLES/DATA/PHONELIST

You opened the printer in slot 1 or port 1, and a file called
PHONELIST. After sending data to the file and to the printer,
you can close both by typing

?CLOSEALL

Working With Data Files 1213






Example:

TO READFILE :FILE

SETREAD :FILE

IF EQUALP FILELEN :FILE READPOS [SETREA!
D []1 CLOSE :FILE STOP]

PRINT READLIST

READFILE :FILE

END

?SETPREFIX "™/L0GO.SAMPLES/DATA/RECORDS

ADDRESS LIST
MARIE: 55 CEDARWOOD
LOGO: 9960 COTE DE LIESSE

The READFILE procedure reads information from a file that is
already open until the end-of-file position (EQUALP FILELEN
:FILE READPOS) is reached. At that time, the file is closed and
execution of the procedure stops.

READER
READER (operation)

READER outputs the current file that is open for reading. You
can change the current read file with the SETREAD primitive.
READER returns the name of the file or the empty list if the
current reader is the keyboard.

Examples:

?PRINT READER
/L0GO.SAMPLES/DATA/RECORDS/ADDRESS

The file cailed ADDRESS in the subdirectory DATA/RECORDS
is the current read file.

Working With Data Files 215






TO LISTFILE :FILE

IF EQUALP FILELEN :FILE READPOS ([STOP1
PRINT READPOS

PRINT READWORD

LISTFILE :FILE

END

?0PEN '"PHONELIST
?SETREAD "PHONELIST
?LISTFILE "PHONELIST
0

PASCAL 545-2654

16

MARIO 631-2222

SETREAD
SETREAD file (command)

SETREAD sets the current reader to file. After you give this
command, READLIST, READWORD, READCHAR, and
READCHARS read information from this file.

Before you use SETREAD, you must open the file with the
OPEN command. An error occurs if the file is not open. To set
the current reader back to the keyboard, give SETREAD the
empty list as input.

Examples:

?SETPREFIX "/LOGO.SAMPLES/DATA
?0PEN "PHONELIST

9CTTF™ " WPyt T
2FwINi =EADFuo
0

The reader is set to PHONELIST and the read position is at the
beginning of the file.

?PRINT READWORD
PASCAL: 545-2654

READLIST reads from the current reader. To set the reader
back to the keyboard:

?SETREAD [

Working With Data Files 217



















Let's try the procedure now.

?SAVEINFO

Type in the member’s name:
Mario Carriere

Type in the phone number:

423-5800
?

The program finished running, but you can’t see what happened
to the data file. To check the result, print out the file.

?POFILE "MEMBERS
Logo displays everything written in the data file MEMBERS.

Mario Carriere
423-5800

What happens if we run the procedure again?

?SAVEINFO

Type in the member’s name:
Renaud Nadeau

Type in the phone number:

392-1563
?

SAVEINFO worked just like it did the first time. Now look at the
result.

?POFILE "MEMBERS
Mario Carriere
423-5800

Renaud Nadeau

392-1563
2

The procedures work for adding more members as well as for
creating the data file for the first time.

A Sample Project Using the Data File System 1ee3



224

Step 2: Retrieving Information

After creating the data file containing names and phone
numbers, the next step is to build a program to find a particular
member’s phone number.

TO FINDINFO

PRINT [Type in the member‘s name:]
MAKE **NAME READLIST

OPEN "MEMBERS

SETREAD "MEMBERS

FINDTEL :NAME

SETREAD [

CLOSE "MEMBERS

END

TO FINDTEL :NAME

IF READLIST = :NAME [PR SE [The phone n!
umber is:] READWORD STOP]

IF EQUALP FILELEN "™MEMBERS READPOS [PR !
[Can‘t find this name.] STOP]

FINDTEL :NAME

END

FINDINFO is the superprocedure. First, it reads from the
keyboard the name of the person whose phone number is
wanted. Then, it opens the data file and tells Logo that it wants
to read information from this data file.

The subprocedure FINDTEL starts reading line by line (using
READLIST) from the beginning of this data file. Each time it
reads a line, FINDTEL compares the line with the name it is
looking for. If they are identical, it reads another line and prints
the sentence

The phone number is:

If not, it checks to see if READLIST has reached the end-of-file
position (EQUALP FILELEN "MEMBERS READPOS). If the
end-of-file position has been reached, FINDTEL prints the
message

Can’t find this name.

Chapter 16: Managing Various Files




Step 3: Changing Information

A member’'s phone number may change, so you must be able
to update the data in the file. To modify part of the data, you
must know the location of the information to be changed. The
procedures to retrieve the information (FINDINFO and FINDTEL)
can be used for this purpose. Once the location is found, you
can write the procedure MODIFY, which rewrites the information
at this location.

TO MODIFY :LOCATION

PRINT [Type in the new phone number:]
SETREAD [1

SETWRITE '"MEMBERS

SETWRITEPOS :LOCATION

PRINT READWORD

SETWRITE [1

END

SETREAD |[] tells Logo that you want to read the data from the
keyboard. SETWRITE "MEMBERS tells Logo that you want to
direct the next PRINT command to write the new data into the

U A T A |

is written at the current location.

Thus, the command PRINT READWORD picks up data from the
keyboard and prints it into the file.

Now you must incorporate this procedure into a new FINDTEL
procedure. FINDTELZ2 will read the file line by line comparing
each line to the name it is looking for. It will then call MODIFY
with the LOCATION it gets from READPOS in the procedure
FINDTEL. READPOS is the input to MODIFY. Let's change the
name of the superprocedure FINDINFO to MODINFO.

A Sample Project Using the Data File System 225






229
230
230
231
232
232
233

Using Property Lists to Keep Records
ERPROPS

GPROP

PLIST

PPROP

PPS

REMPROP

Chapter 17: Property Lists

J 1L 1leydeyo

[227






SAVE and SAVEL are described in
Chapter 16.

191deyo

L1

Any Logo word can have a property list associated with it. A
property list consists of an even number of elements. Each
pair of elements consists of a property, and its value, a word or
a list.

A property list has the form [prop1 val1l prop2 val2 ...]. You can
manipulate property lists using the primitives in this section:

ERPROPS
GPROP
PLIST
PPROP
PPS
REMPROP

The commands SAVE and SAVEL save property lists in files at
the same time they save procedures and variable names.

Property lists can be very useful in keeping records or other
structured data bases. The following example is used as a
context for explaining the property list primitives.

Suppose you want to keep track of the telephone numbers and
birthdays of your friends. Invent a Logo word, say F1, to act as
a placekeeper for your first friend. Then write

PPROP "F1 "“NAME [(BRIAN SILVERMANI]
PPROP *F1 "PHONE [514 555 41231
PPROP "F1 BIRTHDAY [SEPT 23]

Using Property Lists to Keep Records 229



230

Do this for all your friends, giving your second friend the
placekeeping word F2 and so on. For example:

PPROP "F2 "“NAME [(EFFIE MANIATIS]
PPROP "F2 "“PHONE [514 631 61231
PPROP "F2 "BIRTHDAY [MAY 201

PPROP '"F3 "NAME [MICHAEL QUINNI
PPROP *F3 "PHONE [619 742 55551
PPROP "F3 "BIRTHDAY [DEC 31

After you have finished, make a list of the placekeeping words
like this:

MAKE "FRIENDS [F1 F2 F3 1

You can then use GPROP to write procedures that search
through the list FRIENDS to do such things as find a given
friend’s birthday or list all your friends with the same area code.
Examples of such procedures appear with the primitive
descriptions that follow.

ERPROPS (command)

ERPROPS (for erase properties) erases all properties from the

r Tocl <« ichy Ioin tl
workspace, use PPS. Use REMPROP to remove properties one
at a time from the workspace.

GPROP name property (operation)

GPROP (for get property) outputs the value of property of
name. If there is no such property, GPROP outputs the empty
list.

Examples:

?SHOW GPROP '"F1 "NAME
[BRIAN SILVERMANI

Chapter 17: Property Lists







232

PPROP name property object (command)

The PPROP (for put property) command gives name

property with value object. Note that ERALL erases procedures,
variables, and properties. Use REMPROP to erase properties
one at a time or ERPROPS to erase them all at once.

Example:

?SHOW PLIST "F3
[(NAME [MICHAEL QUINNI PHONE [619 742 55!
§51 BIRTHDAY [DEC 311

?PPROP "F3 '"ADDRESS [55 OAKRIDGE]

?SHOW PLIST "F3

[NAME [MICHAEL QUINN] PHONE (619 742 55!
S51 BIRTHDAY (DEC 31 ADDRESS (55 OAKRID!
GE11

PPS (command)

The PPS (for print properties) command prints the property lists
of everything in the workspace.

Example:

?PPS

PPROP "F3 *“NAME [MICHAEL QUINNI
PPROP '"F3 "PHONE [619 742 55551
PPROP '"F3 "BIRTHDAY [DEC 31
PPROP '"F3 "ADDRESS [55 OAKRIDGE]
PPROP "F2 "NAME [EFFIE MANIATISI
PPROP "F2 "PHONE [514 631 61231
PPROP "F2 "“BIRTHDAY [MAY 201
PPROP "F1 "NAME (BRIAN SILVERMANI]
PPROP "F1 "PHONE [514 555 4123]
PPROP "F1 "BIRTHDAY [SEPT 23]

Chapter 17: Property Lists




See also sections "PPROP™ and
"GPROP."

REMPROP name property (command)

The REMPROP (for remove property) command removes
property from the property list of name.

Example:

? SHOW PLIST "F1

[NAME [BRIAN SILVERMAN] BIRTHDAY [SEPT !
231 PHONE [514 555 412311

?REMPROP "F1 "PHONE

?7GHOW PLIST '"F1

[NAME [BRIAN SILVERMAN]I BIRTHDAY [SEPT !
2311

REMPROP 233






F---------

238 Assembly-Language Primitives
238 Some Specifics About the Apple’'s Memory
241 Using Buffer Space
241 Using Node Space
241 AUXDEPOSIT

242 AUXEXAMINE

242 .BLOAD

242 .BSAY™

242 .CALL

242 .DEPOSIT

243 .EXAMINE

243 Special Graphics Primitives
243 .SCRUNCH

243 SETSCRUNCH

245 Miscellaneous Primitives

245 .CONTENTS

245 QUIT

Chapter 18: Special Primitives

Joai1deyo

8 I

235






Ja1deyo

8 I

This chapter presents some special primitives that may affect
the Logo system itself. These primitives give you the power of
directly accessing the computer memory or modifying what's in
it. At the same time they are dangerous primitives because you
can destroy the contents of your workspace in Logo by using
them carelessly. If that happens, you will need to restart Logo.
The names of these primitives start with a period to warn you
that they are dangerous. You should save your work before
experimenting with them.

The special primitives appear in three groups:
® assembly-language and direct-memory-access primitives
® special graphics primitives

® miscellaneous primitives.

Chapter 18: Special Primitives 237



See the technical reference manual
for your computer for a more
complete explanation of the
memory layout.

238

This section explains the special primitives that allow you to use
assembly-language programs from Logo and to directly access
memory. It also gives you some specific information about the
Apple’'s memory that is useful for programming in assembly
language.

The primitives appear in this order:

AUXDEPOSIT
AUXEXAMINE
.BLOAD
.BSAVE

.CALL
.DEPOSIT
.EXAMINE

Some Specifics About the Apple’s Memory

The Apple II's memory is divided into two 64K banks: the main
bank and the auxiliary bank. The following memory maps show
you how Logo uses these two banks.

Chapter 18: Special Primitives




Figure 18-1. Map of Main Memory Bank

Main Memory
FFFF
D000
cooo
BFO0O
6100
6000
5C00
5800
5400
5000
4C00
4800
4400
4000
2000
800
400

0

ProD0OS
I/0 Space
Free Space and ProDOS
Logo Code
Logo Data
File Buffer 5
File Buffer 4
File Buffer 3
File Buffer 2
File Buffer 1
File Buffer 0
Dribble Buffer
Load/Save Buffer
Hi-Res Graphics
Edit Buffer
Text Screen 1

Logo Data

Assembly-Language Primitives

1£0Y






Using Buffer Space

You can use the edit buffer, graphics buffer, and file buffers for
your programs if these buffers are not being used by Logo
while your programs are running.

The edit buffer and graphics buffer should be used only for
temporary storage, that is, storage that you need only while
your assembly code is executing. If you use the edit buffer,
make sure you mark the flag for indicating invalid contents of
the edit buffer. If you use the graphics buffer, be sure to clear it
out when you're finished to prevent unpredictable graphic
displays.

The file buffers can also be used for assembly-language code.
To make sure that Logo does not use the buffers you are
using, you must change the number of files that Logo can use
at the location indicated in Table 18-1. Note that the number
stored is nine times the number of files Logo will handle.

If you need 2K bytes for your code, you can change the number
of files Logo can have open from 54 to 36. Doing this frees file
buffers 4 and 5 for your use.

Using Node Space

You can use node space for assembly-language programs. The
only time you can reserve the node space is when Logo first
starts up, no matter when you intend to actually use it. You
reserve space by changing the address of the end of node
space shown in Table 18-1.

When Logo first starts up, node space extends from $800

to $B6FF; the end being $B6FF. To reserve 8K bytes of node
space for your use, change the $B7 at the location indicated in
Table 18-1 to $97. You must remember to free up nodes in
multiples of five bytes (node length).

AUXDEPOSIT
.AUXDEPOSIT /loc byte (command)

The .AUXDEPOSIT command stores the value byte at address
loc in the auxiliary bank.

Assembly-Language Primitives 241



242

JAUXEXAMINE
AUXEXAMINE loc (operation)

The AAUXEXAMINE operation outputs the value stored at
address /oc in the auxiliary bank.

.BLOAD
.BLOAD pathname loc (command)

The .BLOAD command loads a binary-format file, consisting of
data or assembly-language code, into address /oc in the main
bank of memory.

.BSAVE

.BSAVE pathname loc integer (command)

The .BSAVE command copies an area of the main bank of
computer memory to the file indicated by pathname. The
memory area transferred starts at /oc for integer bytes.

.CALL

.CALL Joc (command)

The .CALL command transfers control to the indicated
machine-language subroutine starting at address /oc (decimal) in
the main bank. An RTS in your subroutine returns control back
to Logo.

.DEPOSIT
.DEPOSIT /loc byte (command)

The .DEPOSIT command writes byte into machine address /oc
(decimal) in main memory.

Chapter 18: Special Primitives



See also section “.SETSCRUNCH."

.EXAMINE
.EXAMINE /oc (operation)

The .EXAMINE operation outputs the contents of machine
address /oc {(decimal) in main memory.

The special graphics primitives let you review and change the
aspect ratio, the ratio of lengths of vertical turtle steps to
horizontal turtle steps. This ratio is set to 0.8 when you start up
Logo.

You will want to change this ratio if squares that you draw on
the screen appear as rectangles, and circles that you draw
appear as ellipses.

.SCRUNCH
.SCRUNCH (operation)

The .SCRUNCH operation outputs the aspect ratio, a decimal
number that is the ratio of the size of a vertical turtie step to
the size of a horizontal one. The aspect ratio is 0.8 when Logo
starts up.

.SETSCRUNCH
.SETSCRUNCH number (command)

.SETSCRUNCH sets the aspect ratio to number. The aspect
ratio is the ratio of the size of a vertical turtle step to the size of
a horizontal one. If you change the aspect ratio, the value of
your YCOR is changed so the turtle appears in the same place
on the screen.

Special Graphics Primitives 243



244

Example:

.SETSCRUNCH .5 makes each vertical turtle step half the
length of a horizontal one.

.SETSCRUNCH has two uses. First, if squares turn out to be
rectangles, and circles turn out to be ellipses on your screen,
you can correct this; for most screens an aspect ratio of .8 is
correct. Second, if you want turtle drawings to come out
squashed or extended, you can use .SETSCRUNCH. For
example, you can use a circle procedure to draw an ellipse:

TO CIRCLE :RADIUS

REPEAT 60 [FD :RADIUS * 3.141589 / 30 RT!
61

END

TO ELLIPSE :HORIZ :VERT
.SETSCRUNCH .8 * :VERT / :HORIZ
CIRCLE :HORIZ

END

Ol O] O

CIRCLE 25 ELLIPSE 25 40 ELLIPSE 40 25

Chapter 18: Special Primitives




See Appendix D for more
information on node space.

This section describes two miscellaneous primitives,
.CONTENTS and .QUIT.

.CONTENTS
.CONTENTS (operation)

The .CONTENTS operation outputs a list of all objects that
Logo knows about. This list includes your variables, procedures,
and properties, the Logo primitives, most of the things you've
typed in, and some other words. .CONTENTS can use up a lot
of node space.

.QUIT
QUIT {command)

The .QUIT command is a safe way to exit Logo. it ensures that
all your files are closed and everything else is safe.

Miscellaneous Primitives 245









255 Graphics Tools

255
256
256
257
257
257
258
258
258
259
260
260
261
261
261
261

e T2, ]

262
263

248

ARCR and ARCL
CIRCLER and CIRCLEL
POLY

Math Tools

ABS
CONVERT
DIVISORP
LOG

LN

PWR

EXP

Program Logic or Debugging Tools

COMMENT

FOREVER

MAP

SORT and SUPERSORT

(LY NI o
| 3

DRIVE
TEACH

Appendixes










This appendix contains all the error messages you can get
while using Logo. The words file and name (in lowercase

letters) in this appendix are replaced with the specific word in

question when the message is displayed.

Table A-1. Logo Messages

Number

Y

©O© 0 N OO W N

11

12
13
15
16
17
18

Message

name IS ALREADY DEFINED
NUMBER TOO BIG

THE DISK WAS SWITCHED
name IS A PRIMITIVE

CAN'T FIND LABEL name

CAN'T name FROM THE EDITOR
name IS UNDEFINED

name DIDN'T OUTPUT TO name

I'M HAVING TROUBLE WITH THE DISK -
number

DISK FULL

CAN'T DIVIDE BY ZERO
FILE file ALREADY EXISTS
FILE file PROTECTED
FILE file NOT FOUND

FILE file WRONG TYPE

Appendix A: Messages

e xl1puoadde

251



252

Table A-1. Logo Messages (continued)

Number
19
20
21
23
24
25
26
27
28
29
30
31
33
34
35
36
37
38
40
41
44
45
46
47
48

Message

TOO FEW ITEMS IN name

TOO MANY FILES OPEN

CAN'T FIND CATCH FOR name

OUT OF SPACE

name CAN'T BE USED

name IS NOT TRUE OR FALSE
PAUSING...

YOU'RE AT TOPLEVEL

STOPPED!

NOT ENOUGH INPUTS TO name
TOO MANY INPUTS TO name

TOO MUCH INSIDE ()'s

CAN ONLY DO THAT IN A PROCEDURE
TURTLE OUT OF BOUNDS

| DON'T KNOW HOW TO name

name HAS NO VALUE
UNEXPECTED )

YOU DON'T SAY WHAT TO DO WITH name
DISK IS WRITE PROTECTED

name DOESN'T LIKE name AS INPUT
NO FILE SELECTED

FILE file NOT OPEN

FILE file ALREADY OPEN

FILE POSITION OUT OF RANGE
DEVICE UNAVAILABLE

Appendix A: Messages




rf
m 8 W M M M NN NN

Table A-1. Logo Messages (continued)

Number
50
52
53
54
55
56

Message

ALREADY DRIBBLING

DEVICE number IN USE

FILE file TOO BIG

VOLUME NOT FOUND FOR file
SUBDIRECTORY NOT FOUND FOR file
SUBDIRECTORY name NOT EMPTY

I LOGO SYSTEM BUG !l

Should not occur. Please write
to LCSI if it does.

Appendix A: Messages

[253









256

TO ARCR :RADIUS :DEGREES

LOCAL "STEP LOCAL ™"REM

MAKE "STEP 2 * :RADIUS * 3.1416 / 36
MAKE °'REM REMAINDER :DEGREES 10

REPEAT :DEGREES / 10 [RT 5§ FD :STEP RT !
51

IF :REM > 0 [FD :STEP * :REM / 10 RT :R!
EMI]

END

TO ARCL :RADIUS :DEGREES

LOCAL *STEP LOCAL "REM

MAKE 'STEP 2 * :RADIUS * 3.1416 / 36
MAKE '"REM REMAINDER :DEGREES 10

REPEAT :DEGREES /7 10 [LT 5 FD :STEP LT !
51

IF :REM > 0 [FD :STEP * :REM / 10 LT :R!
EMI

END

CIRCLER and CIRCLEL

CIRCLER and CIRCLEL draw right and left turn circles with a
specified radius as input.

TO CIRCLER :RADIUS

LOCAL "STEP

MAKE ®“STEP 2 * :RADIUS * 3.1416 / 36
REPEAT 36 [RT 5 FD :STEP RT S1

END

TO CIRCLEL :RADIUS

LOCAL "STEP

MAKE "STEP 2 * :RADIUS * 3.1416 / 36
REPEAT 36 [LT S FD :STEP LT 51

END

POLY

POLY draws a polygon over and over.

TO POLY :SIDE :ANGLE
FD :SIDE

RT :ANGLE

POLY :SIDE :ANGLE
END

Appendix B: Useful Tools




You can use the procedures in this section to
e find the absolute value of a number (ABS)
® change a number from one base to another (CONVERT)

e find out if one number divides evenly into a second number
(DIVISORP)

e calculate the logarithm to the base 10 of a number (LOG)
® calculate the natural logarithm of a number (LN)
e find the value of a number to a given power (PWR)

e use the natural exponential function (EXP).

ABS

ABS outputs the absolute value of its input.

TO ABS :NUM
OP IF :NUM < 0 [-:NUM] [:NUMI]
END

CONVERT

CONVERT converts N, a number, from a base value (:FRBASE)
to another base value ((TOBASE).

TO CONVERT :N :FRBASE :TOBASE

OP DEC.TO.ANYBASE ANYBASE.TO.DEC :N :FR!
BASE 1 :TOBASE

END

TO ANYBASE.TO.DEC :N :BASE :POWER

IF EMPTYP :N [O0OP 01

OP (:POWER * C.TO.N LAST :N> + ANYBASE.!
TO.DEC BL :N :BASE :POWER * :BASE

END

TO DEC.TO.ANYBASE :N :BASE

IF :N < :BASE [OP N.TO.C :Nl

OP WORD DEC.TO.ANYBASE INT QUOTIENT :N !
:BASE :BASE N.TO.C REMAINDER :N :BASE
END

Math Tools 257



258

TO C.TO.N :N

IF NUMBERP :N [OP :NI]
OP CASCII :N)> - 55
END

TO N.TO.C =N

IF :N < 10 [OP :NI
OP CHAR 55 + :N
END

You can then use CONVERT to convert decimal to hexadecimal
or hexadecimal to decimal.

TO DECTOHEX :N
OP CONVERT :N 10 16
END

TO HEXTODEC :N
0P CONVERT :N 16 10
END

DIVISORP

DIVISORP indicates (TRUE or FALSE) whether its first input
divides evenly into its second.

TO DIVISORP :A :B
0P 0 = REMAINDER :B :A
END

LOG

LOG returns the logarithm to the base 10 of an input number. It
uses the LN procedure, which follows.

TO LOG :X

OP 0.434294 * LN :X
END

LN

LN calculates the natural logarithm of an input number using ail
the following math procedures as subprocedures.

TO LN :X

LOCAL "RLIST

IF :X < 0 [OP [CAN‘T DO LOG OF NEGATIVE!
NUMBERST]

Appendix B: Useful Tools




IF :X = 1 [OP 0]

IF :X < 1 [MAKE "RLIST ROOT €1 / :X) 1}
-11 [MAKE *"RLIST ROOT :X 1 11

OP (FIRST BF :RLIST) * (LN1 FIRST :RLIS!
T) /7 C(LAST :RLIST)

END

TO ROOT :X :NPWR :CONST

IF :X ¢ 1.2 [OP C(LIST :X :NPWR :CONST)]
OP ROOT (SQRT :X> €2 * :NPWR) :CONST
END

TO LN1 :X

MAKE "X C(:X - 1) /7 C:X +1)

OP 2 * (:X + (PWR :X 3) / 3 + ( PWR :X !
5) /7 B)

END

PWR

PWR returns the value of A to the X power. If X'is a fraction
and A is not equal to one, PWR uses the natural functions EXP
and LN. If Ais less then 0 and X is a fraction, the result should
be a complex number.

TO PWR :A :X

IF AND (:A ¢ 0) NOT (:X = INT :X) [PR (!
SE :A [TO POWER] :X [IS A COMPLEX NUMBE!
R!'1) STOP1

IF OR :A = 1 :X = INT :X [OP INTPWR :A !
: X1

OP EXP C(C(LN :A) * :X)

END

TO INTPWR :A :INTP

IF OR :A = 1 :INTP = 0 [0OP 11

IF :INTP ¢ 0 [OP 1 / PWRLOOP (:A) (-:IN!
TP) 1

OP PWRLOOP :A :INTP

END

TQ PWRLOGP :A :INTP

IF :INTP = 0 [OP 11

OP :A * PWRLOOP :A :INTP - 1
END

Math Tools 259






COMMENT

COMMENT allows you to embed comments in your programs in
the form:

; [THIS IS A COMMENT]

TO ; :COMMENT
END
FOREVER

FOREVER repeats a group of instructions until you press

(& )-(Esc) or turn off the power.

TO FOREVER :INSTRUCTIONLIST
RUN :INSTRUCTIONLIST
FOREVER :INSTRUCTIONLIST
END

MAP

MAP applies a command to every element of a list.

TO MAP :CMD :LIST
IF EMPTYP :LIST [STOPI

RUN LIST :CMD WORD "' FIRST :LIST
MAP :CMD BF :LIST

END

SORT

SORT takes a list of words and outputs them alphabetically.

TO SORT :ARG :LIST

IF EMPTYP :ARG [OP :LISTI

MAKE '"LIST INSERT FIRST :ARG :LIST
OP SORT BF :ARG :LIST

END

TO INSERT :A :L

IF EMPTYP :L [OP C LIST :A )1

IF BEFOREP :A FIRST :L [OP FPUT :A :L1
OP FPUT FIRST :L INSERT :A BF :L

END

Program Logic or Debugging Tools 261



262

Try this:
MAKE *SORTLIST SORT [A DEF T C 21 (1

PR :SORTLIST
ACDE . TZ

Then type

MAKE '"SORTLIST SORT [(FOO BAR BAZ1 :SORT!
LIST

PR :SORTLIST

A BAR BAZ C D E F FOO T 2

WHILE

WHILE repeats a group of instructions until :CONDITION
becomes false.

TO WHILE :CONDITION :INSTRUCTIONLIST
TEST RUN :CONDITION

IFFALSE [STOP]

RUN :INSTRUCTIONLIST

WHILE :CONDITION :INSTRUCTIONLIST
END

You can use the procedures in this section to

e drive the turtle around the screen with the touch of a key
(DRIVE)

e define a procedure as you are running it line by line
(TEACH).

DRIVE

DRIVE lets you drive the turtle around the screen with the touch

of a key. This is an example of single-keypress interactive
programming.

TO DRIVE

IF KEYP [LISTEN]I]
FD 1

DRIVE

END

Appendix B: Useful Tools





















If you load your STARTUP file in your workspace, type
MAKE "STARTUP [PR [GOOD MORNINGI]

Logo saves the STARTUP variable and its contents when you
tell it to save your new STARTUP file. Then, whenever you start
up Logo, your computer will greet you with GOOD MORNING
before saying WELCOME TO LOGO.

It's easier to use the EDITFILE command to edit a file and add
a variable such as STARTUP. To add a STARTUP variable to a
STARTUP file this way, type

EDITFILE 'STARTUP

The entire file contents will appear in the Logo Editor. Move to
the bottom of the file (where the variables are stored) and add a
line like this:

MAKE "STARTUP [WELCOME]

Then move the cursor back up into the area where procedures
are stored, begin a new line, and type something like this:

TO WELCOME

LOCAL "ANSWER

PR [Hello again, Eric!]l

TYPE [How are you today?]

MAKE "ANSWER RW

IF MEMBERP :ANSWER [FINE OK GREAT] [PR !
[I‘m happy to hear thatl STOP]

PR [Well, let’s hope Logo-ing will help!
]

END

To summarize, Logo looks for a file called STARTUP on the
disk in drive 1. If Logo finds the file, Logo loads it and then
looks for a variable called STARTUP. If the variable exists,
Logo runs its contents.

Creating a Startup File (269









For a description of the RECYCLE
command, see Chapter 14.

272

The internal workings of Logo also use nodes. The interpreter
knows about certain free nodes that are available for use. When
there are no more free nodes, a special part of Logo called the
garbage collector looks through all the nodes and reclaims any
nodes that are not being used.

Example:

MAKE '"NUMBER 7
MAKE ''NUMBER 90

When Logo executes MAKE "NUMBER 7, it assigns NUMBER
to one node, which hold the value 7. After executing MAKE
"NUMBER 90, Logo can reuse the nodes containing the 7.
Logo will reclaim those nodes as free nodes the next time the
garbage collector runs. The garbage collector runs automatically
when necessary, but you can make it run with the Logo
command RECYCLE.

The operation NODES outputs the number of free nodes;
however, if you really want to find out how much space you
have, you shouid do something like the following:

RECYCLE PRINT NODES
1259

If you find that you are running out of space, you might want to
rewrite your program so that it uses less space. Consider these
programming tips:

® Use procedures to replace repetitive sections of the
program.

® Avoid creating new words. To save space, you can use the
names of inputs of one procedure as the names of inputs of
other procedures. You can also use the names of
procedures and primitives as variable names.

® Remember that it is bad form to try to save space by using
short or obscure words in your procedures. Doing so may
save space, but it makes the procedures less readable.

Appendix D: Memory Space















The left bracket ([) and right bracket (]) characters indicate the
start and end of a list or sublist.

Parentheses group things in ways Logo ordinarily would not,
and vary the number of inputs for certain primitives.

If you reach the end of a Logo line—that is, you press
(RETURN)—and brackets or parentheses are still open, Logo
closes ali sublists or expressions. For example:

?REPEAT 4 [PRINT [THIS [IS [A [TEST
THIS [IS [A [TESTI
THIS [IS [A [TESTI]
THIS [IS [A [TESTI
THIS [IS [A [TESTI

If Logo finds a right bracket for which there was no
corresponding left bracket, Logo stops execution of the rest of
the line or procedure. For example:

?1PRINT "ABC
2

Normally, you have to put a backslash (\) before the characters
Ll.G) +,- % =, <, >,and\ itself. But the first character
after a quotation mark () does not need to have a backslash
preceding it. For example:

PPRINT "+

*

Quotation Marks and Delimiters 277



278

If a delimiter occupies any position but the first one after the
guotation mark, it must have a backslash preceding it. For
example:

PPRINT "esss
NOT ENOUGH INPUTS TO *

The only exception to the above general rule is brackets ([ ]). If
you want to put a quotation mark before a bracket, you must
always include a backslash between the quotation mark and the
bracket. For example:

?PRINT *I

YOU DON’T SAY WHAT TO DO WITH [ 1
?PRINT "\I

[

The way in which Logo parses the minus sign (-) is an unusual
case. The problem here is that the minus sign character is used
to represent three different things:

e part of a number, to indicate that it is negative, as in -3

e a procedure of one input, called unary minus, which outputs
the additive inverse of its input, as in -XCOR or -:DISTANCE

® a procedure of two inputs, which outputs the difference
between its first input and its second, as in 7 - 3 and
XCOR - YCOR.

The parser tries to be clever about this potential ambiguity and
figures out which of the three uses is meant, using the following
rules:

1. If the minus sign immediately precedes a number, and
follows any delimiter (including a space) except right
parenthesis, Logo parses the number as a negative number.
This allows the following behavior:

PRINT 3 * -1 parses as 3 times negative 1
PRINT 3*-4 parses as 3 times negative 4
FIRST [- 3 41 outputs -
FIRST [-3 4] outputs -3

Appendix E: Parsing




2. If the minus sign is preceded by a numeric expression, it
works like an infix procedure. For example:

PR 3-4 is -1
PR XCOR - YCOR

The following are interpreted the same:
MAKE "A SE XCOR - YCOR 3
MAKE "A SE XCOR -YCOR 3
MAKE "A SE XCOR-YCOR 3

3. If the minus sign is not preceded by a numeric expression, it
works like a unary minus. For example:

PR -XCOR
PR -(3+4)

The Minus Sign 279






= —= B B

} X1puadde

lis appendix contains a chart of American Standard Code for
Information Interchange (ASCIl) code values (in decimal) for all
characters in Logo. Note that characters can be

e normal (white characters on black background)
e inverse video (black characters on white background).

Table F-1 shows the ASCII codes for normal characters;
Table F-2 shows the ASCII codes for characters in inverse
video.

To change a normal character to inverse, use the following
procedure:

TO INVERSE :CH¢

IF ASCII :CHAR)Y > 127 [0OP :CHAR]

IF OR (ASCII :CHAF <¢ 64 AND (ASCII :CHAR!
) » 96 (ASCII :CHAR) <« 128 [(OP CHAR 128 +!
ASCII :CHAR]) [OP CHAR 64 + ASCII :CH¢ 1]
END

Appendix F: ASCIl Character Codes 281






Table F-2. ASCIl Codes of Inverse Characters

ASCII
code

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

arr-
)

156
157
158
159

char

>@

>  —N<XXE<CHOWITOUOZErXe—IOMMUOD

ASCIl char ASCIl Mouse
code code Text
160 SPACE 192 o«
161 ! 193 3
162 " 194 N
163 # 195 X
164 $ 196 v
165 % 197 1
166 & 198 x
167 ’ 199 =
168 ( 200 €
169 ) 201
170 . 202 N
171 + 203 T

172 , 204

173 - 205 s
174 : 206 n
175 / 207 K
176 0 208 >
177 1 209 ¥,
178 2 210 4
179 3 211 -
180 4 212 L
181 5 213 >
182 6 214 #
183 7 215 B
184 8 216 C
185 9 217 |
186 : 218 I
4= ; s 0
188 { 220 —
189 = 221 ar
190 } 222 =]
191 ? 223 I

Appendix F: ASCII Character Codes

ASCIl
code

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
252
253
254
255

char

-

AN X T < C ~0WOTO33 —X— —TJQ—=-0000TW®

~

Blot

283






B = N = B B B B B B B BN mE N

b x1pusdde

Parentheses around an input indicate that the input is optional.
A number sign (#) indicates a procedure that can take any
number of inputs; if you give it other than the number indicated,
you must enclose the entire expression in parentheses.

ALLOPEN

#AND pred1 pred2

ARCTAN number

ASCII char

.AUXDEPOSIT loc byte

AUXEXAMINE /oc

BACK, BK distance

BACKGROUND, BG

BEFOREP word? word2

.BLOAD pathname loc

Qutputs a list of the files that
are currently open.

Outputs TRUE if all of its
inputs are TRUE.

Outputs the arctangent of
number in degrees.

Outputs the ASCII code for
the character char.

Stores the value byte at
address /oc in the auxiliary
bank.

Outputs the value stored at /oc
in the auxiliary bank.

Moves the turtle distance
steps back.

Outputs a number
representing the background
color.

Outputs TRUE if word? comes
before word2 according to the
ASCII code.

Loads an assembly-language
file into memory at /oc.

Appendix G: Summary of Logo Primitives 1285












FILL

FIRST obj

FORM number field precision

FORWARD, FD distance

FPUT obyj list

FULLSCREEN, FS

GO word

GPROP name prop
HEADING

HELP word
HIDETURTLE, HT
HOME

IF pred list1 (list2)

IFFALSE, IFF /st

Fills the shape enclosing the
turtle with the current pen
color. If the turtle is not
enclosed, the background is
filled.

Outputs the first element of its
input.

Outputs number in field
spaces with precision digits
after the decimal point.

Moves the turtle distance
steps forward.

Outputs a list formed by
putting its first input in front of
list.

tis re ) to
2

AR R LISy Iy

Transfers control to LABEL
word.

Outputs prop property of
name.

Outputs the turtle’s heading
(its direction) in deg s.

Prints the inputs for the
primitive or procedure
indicated.

Makes the turtle invisible.

Moves the turtle to [0 0] and
sets the heading to 0.

If predis TRUE, runs /istf;
otherwise, runs /ist2.

Runs /ist if the most recent
TEST was FALSE. If no test
has been made, the list is not
run.

Appendix G: Summary of Logo Primitives 289






MEMBER obj1 obj2

MEMBERP obj1 0bj2

NAME obj name

NAMEP word

NODES

NODRIBBLE
NOT pred

NUMBERP obj

ONLINE
OPEN file

#OR pred1 pred2

OUTPUT. OP obj

PADDLE paddlenumber

PARSE word

PAUSE
PEN

PENCOLOR, PC

PENDOWN, PD
PENERASE, PE
PENREVERSE. PX

Appendix G: Summary of Logo Primitives

Outputs the part of obj2 that
starts with obj1.

Outputs TRUE if its first input
is an element of its second
input.

Makes obj the value of name.

Outputs TRUE if word has a
value.

Outputs the number of free
nodes.

Closes a dribble file.

Outputs TRUE if pred is
FALSE.

Outputs TRUE if objis a
number.

Lists the disk volumes on line.

Opens file so it can send or
receive characters.

Outputs TRUE if any of its
inputs are TRUE.

Returns control to the calling
procedure, with obj as output.

Outputs the rotation of the dial
on the indicated paddle.

Outputs a list obtained from
parsing word.

Makes a procedure pause.

Outputs the pen state (PD,
PU, PE, PX).

Outputs a number
representing the pen color.

Puts the pen down.
Puts the eraser down.

Puts the reversing pen down.

291



292

PENUP, PU
PLIST name

PO name(list)

POALL

POFILE pathname

PON name(list)

PONS

POPS

POS

POT namellist)

POTS

PPROP name prop obj

PPS

PREFIX

PRIMITIVEP word

Raises the pen.

Outputs the property list of
name.

Prints definitions of the named
procedure(s).

Prints definitions of all
procedures and variables in
the workspace.

Prints out the contents of the
file indicated.

Prints the name(s) and value(s)
of the variable(s) listed.

Prints the names and values
of all unburied variables in the
workspace.

Prints definitions of all
unburied procedures in the
workspace.

Outputs the position of the
turtle in coordinates.

Prints the title line(s) of the
named procedure(s).

Prints the title lines of all
unburied procedures in the
workspace.

Gives name the property prop
with the value oby.

Prints property list(s) of
everything in the workspace.

Outputs the current ProDOS
prefix, most recently set with
SETPREFIX.

Outputs TRUE if word is a
primitive.

Appendix G: Summary of Logo Primitives













296

STOP

#SUM number1 number?2
TEST pred

TEXT name

TEXTSCREEN, TS

THING name
THROW name

TO name (inputs)

TOOT frequency duration

TOWARDS [xcor ycor]

TRACE name(list)

#TYPE obj

UNBURY name(/ist)

UNBURYALL

UNBURYNAME namelist)

UNSTEP name(list)

UNTRACE name(list)

UPPERCASE word

Stops the procedure and
returns control to the caller.

Outputs the sum of its inputs.

Determines whether pred is
TRUE or FALSE.

Outputs the definition of
procedure name as a list.

Devotes the entire screen to

text. Same as (CONTROL H{T).

Outputs the value of name.

Transfers control to the
corresponding CATCH.

Begins the definition of name.

Produces a sound of
frequency for duration.

Outputs the heading the turtle
would have if facing the
coordinates specified.

Causes tracing information to
be printed for traced
procedure(s).

Prints its input (strips off the
outer brackets of lists).

Unburies the procedure(s) in
name(list).

Unburies all the procedures
and variables buried in the
workspace.

Unburies the variable name(s)
in name(list).

Ends the stepping of named
procedure(s).

Ends the tracing of named
procedure(s).

Outputs word in all uppercase
letters.

Appendix G: Summary of Logo Primitives



WAIT /integer

WIDTH

WINDOW

#WORD word1 word?2

WORDP obj

WRAP

WRIT™2C™

WRITER

XCOR

YCOR

number! + number?2

numberl - number?2

numberl * number?2

numberl | number?2

numberl < number?2

obj1 = obj2

numberl > number?2

Pauses for approximately
integer 60ths of a second.

Gives the current setting of
the screen width, eithet J or
80 characters wide.

Makes the turtle field
unbounded.

Outputs a word made up of its
inputs.

Outputs TRUE if obj is a word.
Makes the turtle field wrap
around the edges of the
screen.

-~ thef | ton "M
current file being written to.

Outputs the current file open
for writing.

Outputs the x-coordinate of
the turtle.

Outputs the y-coordinate of
the turtle.

Outputs numbert plus
number2.

Outputs number? minus
number?2.

Outputs number? times
number?2.

Outputs numbert divided by
number?2.

Outputs TRUE if numbert is
less than number?.

Outputs TRUE if obj1 is equal
to obj2.

Outputs TRUE if numberl? is
greater than number?2.

Appendix G: Summary of Logo Primitives 1z






X1 puoadde

Here are some notes to help you get your printer working
properly with Logo. If you are successfully using your printer
from Logo, then you don’t need to read any further.

If you are having printing problems, there are generally only
three areas that you need to check to identify and correct the
problem:

® the software—your program

® the computer's configuration, including its interface card or
built-in port

® the printer's configuration, including its connecting cable.
Table H-1 gives common symptoms of printer problems and
possible causes for each of them.
Table H-1. Printer Problems and Causes
Problem Possible Cause
{See Section)

No printing at all Software (programming) error
(The Software)

n| ir
incorrectly configured or
installed

(The Computer)

Printer incorrectly set up or
configured
(The Printer)

Appendix H: Using a Printer With Logo 299



For more information, see Chapter
16.

3001

Table H-1. Printer Problems and Causes (Continued)

Possible Cause
(See Section)

Problem

Incorrect printing Computer or interface card
incorrectly configured

(The Computer)

Wrong interface cable
(The Computer)

Printer incorrectly configured
(T Prir )

Identify the type of error that you are observing, then go to the
appropriate sections of this appendix to find more information
and suggestions for fixing the problems.

If you follow all the suggestions and none of them turns out to
be the cause of the problem, there may be something wrong
with the equipment. In this case, take the printer and computer
to your dealer to be thoroughly checked out and repaired, if
necessary.

If you can use your printer successfully with prr ams or
languages other than Logo, it is likely that the p..olem lies with

your Logo program. Logo treats all input and output operations
as files. This means that before you can send information to the
printer (referred to by the slot or port that it is connected to)

you must open it for use and then select it as the current writer.

Assuming that your printer is connected to slot or port 1, this
program will send text to the printer:

OPEN 1 SETWRITE 1

PR [THIS IS A TEST:]

PR [IF IT WORKS, SEND QOUT FDOR PIZZA!']
CLOSE 1 SETWRITE [1

OPEN 1 opens slot or port 1 for use, while SETWRITE 1
selects slot or port 1 as the current writer. Any PRINT, TYPE,
or SHOW statements after this prints to the current writer, now
the printer. The last line of the program closes the printer file
and resets the current writer back to the screen.

Appendix H: Using a Printer With Logo













304

If the printer outputs gibberish or just “hiccoughs,” check the
data rate and data format settings of the interface and printer.
Make sure that they match. Make sure that you have the proper
interface cable.

If text is being over-printed, set the printer to generate a line
feed character after each line. If text is always double-spaced,
reset the printer to not generate a line feed after a carriage
return.

Unexpected typefaces, such as double-width or very small
characters, are probably caused by incorrect printer switch
settings.

For any remaining problems, refer to the trouble-shooting
section of your printer’s reference manual.

Appendix H: Using a Printer With Logo













dUb_l

character: A letter, digit, or other symbol that is used as part
of the organization, control, or representation of data.

command: A Logo procedure, either a primitive or one that
you define, that has no output. CLEARSCREEN, FORWARD,
and PRINT are examples of commands. See operation.

conditional: A statement that causes Logo to carry out
different instructions, depending on whether a condition is met.

cursor: A movable marker that is used to indicate a position
on the display screen.

debug: To find and eliminate mistakes in a program.

default: A value or option that is provided by the program
when none is specified.

device: Anything attached to the computer, such as a printer,
video display, or disk drive.

directory: A table on a disk of the names of all the files on
that disk, along with information that tells ProDOS where to find
the files on the disk.

echo: To reflect received data to the sender. For example,
keys pressed on the keyboard are usually echoed as characters
displayed on the screen.

edit: To enter, modify, or delete data.

edit buffer: The portion of the computer’s |
contains all the text that is in the Logo Editor

element: A member of a set; in particular, ¢

empty list: A list that has no elements. YoL
list as [].

empty word: A word that has no character:
empty word as " .

aracar Tn romnua jpfarmatinn narmanantiv f
workspace or a file.
execute: To perform an instruction or a cor

file: An organized collection of information tl
permanently stored for specific purposes.

format: The particular arrangement or layou
data medium, such as the screen or a disk.

Glossary




garbage collection: Cleaning the computer's memory to
make more space available for storage.

global variable: A variable that is always in the workspace,
such as a variable you create with the MAKE primitive. See
local variable.

infix notation: A way of expressing an arithmatic operation
where the operation symbol is placed between the two
numerical inputs. See prefix notation.

input: The information that a Logo primitive or procedure
needs to begin execution.

instruction: In a programming language, any meaningful
expression that specifies one command and its inputs.

integer: A positive or negative number that does not contain
any fractional parts.

interactive: A program that creates a dialogue between the
computer and the user.

K: When referring to storage capacity, two to the tenth power
or 1024 in decimal notation.

list: A collection of Logo objects, a sequence of words or lists
that begins and ends with brackets.

literal word: An explicit representation of a value, especially
the value of a word or list. A literal word is preceded by the
quotation mark character ().

local variable: A variable that exists only when a procedure
is being executed. See global variable.

e W FReeoodR L dBR LRl B

logical operation: A predicate whose input must be either
TRUE or FALSE.

name: A word used as a container for a value in the
workspace.

node: A division of your workspace. Each node is five bytes
long.

object: A word or a list.

operation: A Logo procedure, either a primitive or one that
you define, that has some kind of output. SUM, ONLINE, POS
are examples of operations. See command.

Glossary [309



310

output: The information that a Logo primitive or procedure
gives to another primitive or procedure.

parse: The process by which phrases are associated with the
component names of the grammar that generated the string. In
Logo, to make sense out of a Logo line.

pathname: The name that indicates the location of a file on a
disk. A pathname consists of a device name, a subdirectory
name or names, and the name of the file itself.

picture element (PIXEL): A graphics point. Also, the bits
that contain the information for that point.

predicate: A procedure that outputs either TRUE or FALSE.

prefix: A pathname of a directory or subdirectory that is
automatically placed in front of a filename that does not begin
with a slash.

prefix notation: A way of expressing an arithmetic operation
where the operation symbol or primitive is placed before the
numerical inputs. See infix notation.

primitive: A procedure that is built into Logo.

procedure: A single instruction or a sequence of instructions
to Logo, which has a name and can be permanently stored.

procedure call: A request to execute a named procedure.
You call a procedure either from the top level or from within
another procedure.

ProDOS: The Apple ile and Apple llc operating system under
which Logo runs.

program: A set of procedures that work together.

prompt: A question the computer asks or a signal it displays
when it wants you to supply information.

property list: A list consisting of an even number of
elements. Each pair of elements consists of a property (such as
I.D.) and its value, a word or list (such as Robin).

read: To input data into a device so that you can have access
to it.

real number: Any positive or negative decimal number.

Glossary
















} == 1 B B B B BN .

Cast of Characters

*  (asterisk) 120
[] (brackets) 13, 68

(colon) 14, 15
{  (division sign) 121
SSTEP 152
SUNSTEP 152
= (equal sign) 122
(exclamation mark) 17, 27
(greater than sign) 122
(less than sign) 121
(
(
(

+ AV T

plus sign) 119

minus sign) 119

quotation mark) 13
parsing of 277

ABS procedure 120, 131, 257
accessing files 192
addition 106

with SUM operation 117
AGE procedure 168
ALLOPEN operation 212
AND operation 158
ANNOUNCE procedure 79
ANYBASE.TO.ANYBASE

procedure 257
ARCCOS procedure 108
ARCL procedure 256

Index

ARCR procedure 256

ARCSIN procedure 108

ARCTAN operation 108

arctangent 108

arithmetic operations
addition 106, 117
descriptions of 105
division 106, 112, 113
evaluation of 107
infix-form 118-122
multiplication 106, 112, 120
prefix-form 107-118
results of 106
subtraction 106, 109

ASCII codes 83, 281

ASCII operation 81

ASKINFO procedure 222

aspect ratio 243

assembly language 238

asterisk (*) 120

AUXDEPOSIT command 241

AUXEXAMINE operation 242

auxiliary memory bank 238

BACK command 36

background color 51, 54

BACKGROUND (BG) operation
54

315




316

BEFOREP operation 82
BF (BUTFIRST) operation
69-70
BG (BACKGROUND) operation
54
BK (BACK) command 36
BL (BUTLAST) operation 71
BLOAD command 242
blocks 190
brackets ([]) 13, 68
parsing of 277
.BSAVE command 242
buffer 26
edit 28, 241
file 241
graphics 241
kill 27
BURY command 182
bury facility 175
BURYALL command 183
BURYNAME command 183
BUTFIRST (BF) operation
69-70
BUTLAST (BL) operation 71
BUTTONP operation 163
BYE procedure 212

C.TO.N procedure 258
CALCULATOR procedure 138
.CALL command 242
CANCEL procedure 149
CATALOG command 194
CATCH command 133, 136,
140
CHAR operation 83
characters
ASCII codes for 281
deleting 6
reading 165, 166

(‘l—ll:f‘l(Df\Q Prnr\adnrg 29N

L J |
CHECKWRITE procedure 221
CIRCLE procedure 244

Index

CIRCLEL procedure 256
CIRCLER procedure 256
CLEAN command 47
cleaning the workspace
182-185
CLEARSCREEN (CS)
command 37
CLEARTEXT (CT) command
60
CLOSE command 212
CLOSEALL command 213
CO command 130
colon (:) 14, 15
color
background 51, 54
pen 53, 55
COMFORT procedure 158
commands and operations 14
COMMENT procedure 71, 261
conditionals 125, 126-129
.CONTENTS operation 245
continuation lines 17, 27
control characters 144
interrupting procedures with
144
changing screen use with 63
CONTROL-L 63
CONTROL-S 64
CONTROL-T 64
CONTROL-W 144
CONTROL-Z 144
CONVERT procedure 84, 257
coordinates, x and y 41, 45
COPY procedure 198, 264
COPYDEF command 147-148
COS operation 108
cosine 108
COUNT operation 85
COUNTDOWN procedure 132,
137
COUNTUP procedure 142
CREATEDIR command 195




CS (CLEARSCREEN)
command 37

CT (CLEARTEXT) command
60

CUBE procedure 112

CURSOR operation 60

cursor movement 5, 29

D6 procedure 113
data files 189
closing 212, 213
opening 211, 214
reading from 211
sample project 221
working with 211-221
writing to 211
debugging programs 140-144
DEC.TO.ANYBASE procedure
257
DECIDE procedure 126
DECIMALP procedure 158
decimals 105
DECTOHEX procedure 258
DEFINE command 147, 148
DEFINEP operation 147, 150
defining procedure 11, 21 ~~
deleting
characters 6
lines 6
text 30
delimiters, parsing of 275,
277
.DEPOSIT command 242
device(s) 205
closing 212, 213
opening 211, 214
DICE procedure 115
DIFFERENCE operation 109
directory 190
listing 194
prefix 193

Index

disk(s)

formatting 190

organization 190

volume directory 190

volume name 190
DISTANCE procedure 117
division 106

with INTQUOTIENT

operation 112
with QUOTIENT operation
113

division sign (/) 121
DIVISORP procedure 114, 258
DOIT procedure 135
DOIT1 procedure 135
$STEP procedure 152
SUNSTEP procedure 152
DOT command 47
DOTP operation 54
DRIBBLE command 209
dribble files 189

working with 209-211
DRIVE procedure 262
DUMP procedure 210

ED "OIT command 28
edit buffer 26, 28, 196, 241
EDIT command 28
EDITFILE command 31, 196
editing in the Editor 29
editing procedures 28
Editor 25
editing in the 29
getting out of 31
help 4
how it works 26
keystrokes
cursor movement 29
deleting and inserting text
30
starting up 28, 31
typing in the 29

|_:51 /




318

EDN command 31, 96

EDNS command 31, 97

EFRAC procedure 260

ELLIPSE procedure 244

empty list 69

empty word 68

EMPTYP operation 85

END (special word) 21, 22

equal sign (=) 122

EQUALP operation 87, 106

equipment you must have 3

ER (ERASE) command 181

ERALL command 181

ERASE (ER) command 181

ERASEFILE (ERF) command
196

erasing from the workspace
180-182

ERF (ERASEFILE) command
196

ERN command 181

ERNS command 181

ERPROPS command 230

ERPS command 181

error messages 135, 251

ERROR operation 135

EVENP procedure 114

.EXAMINE operation 243

examining words and lists 81

exclamation mark (1) 17, 27

executing procedures 12

EXP procedure 260

FACTORIAL procedure 121
FALSE 126
FD (FORWARD) command 37
FENCE command 48
file(s) 189
accessing 192
closing 212, 213
description of 189

Index

erasing 196

listing 194

opening 211, 214

reading from 211

saving 206

with SAVEL 207

startup 267

types 189

writing to 211
file buffers 241
FILELEN operation 214
filename 193

changing 199
FILEP operation 196
FILERL procedure 218
FiLL command 48
FILLAT procedure 49
FILLIN procedure 214
FINDBIRTH procedure 231
FINDINFO procedure 224
FINDTEL procedure 224
FIRST operation 69, 71
FLAVORCHART procedure 61
FLIP procedure 14
flow of control 125-126
FOREVER procedure 139, 261
FORM operation 109
formatting disks 190
FORWARD (FD) command 37
FPUT operation 75, 76
frequencies, note 171
FROM.HOME procedure 117
FS (FULLSCREEN) command

61
FULLSCREEN (FS) command

61

garbage collection 177
GET.USER procedure 167
GETLINES procedure 263




global variables 16, 95
GO command 136
GOODVEE procedure 44
GPROP operation 230
graphics, printing 4
graphics buffer 241
graphics screen 35, 59
erasing with CLEAN 47
erasing with CLEARSCREEN
37
loading pictures into 208
printing the 208
saving the 208
greater than sign (>) 122
GREET 13, 16, 22, 98, 177,
178

halting procedures 126
HASDOTP procedure 158
HEADING operation 43

help feature 4, 6

help screen, loading 197

HEXTODEC procedure 258

HIDETURTLE (HT) command
38

HOME command 38

HT (HIDETURTLE) command
38

IF (command or operation) 126

IFFALSE (IFF) command 127

IFTRUE (IFT) command 128

IGNORE procedure 152

INC procedure 102

infix notation 105

infix procedures 276

infix-form operations 118-122
parsing of 276

Index

INP procedure 87
input word 7
inputs to procedures 13
INSERT procedure 82, 261
inserting text 30
instructions
repeating 133
transferring control 133
INT operation 111
integers 105
INTERPRET procedure 165
interrupting procedures
129-133
INTP procedure 111
INTPWR procedure 259
INTQUOTIENT operation 112
INVERSE procedure 281
in it
ITEM operation 73

no e operation o+
keystrokes used at top level 5
kill buffer 27

LABEL command 137
LAST operation 73
LATIN procedure 80
1

LEFT (LT) command 38
LENGTH procedure 177, 178
less than sign (<) 121
lines

continuation 17

deleting 6

parsing 275

reading 167

retrieving 6

[319







object 15
ONLINE operation 197
OP (OUTPUT) command 130
OPEN command 214
ESC 143
opening files 211
operations, logical 157
operations and commands 14
OR operation 160
organizing the workspace
182-185
OUTPUT (OP) command 130

paddle 163
PADDLE operation 163
parentheses 107, 122
parsing of 277
PARSE operation 78
parsing 275-278
pathname 193
changing 199
PAUSE (command or
operation) 131
pausing in procedures 126
PD (PENDOWN) command 49
PE (PENERASE) command 50
pen color 53, 55
PEN operation 54
pen state 47-53, 54-55
PENCOLOR (PC) operation 55
PENDOWN (PD) command 49
PENERASE (PE) command 50
PENREVERSE (PX) command
50
PENUP (PU) command 51
PHONELIST procedure 231
picture file(s) 189
loading 208
printing 4, 208
saving the 208
working with 207-208

Index

PIG procedure 80, 81
PLIST operation 231
plus sign (+) 119
PO command 177
POALL command 178
POFILE command 198
POLY procedure 26, 39, 151,
178, 179, 256
POLYSPI procedure 176
PON command 178
PONS command 179
POPS command 179
POS operation 43
POT command 180
POTS command 180
PPROP command 232
PPS command 232
PR (PRINT) command 169
predicate(s) 126, 157
prefix 193
directory 193
notation 105
setting 199
PREFIX operation 198
prefix-form operations 107
PRIMARYP procedure 91
PRIMITIVEP procedure 147,
150
primitives 4, 11
PRINT (PR) command 169
print text and graphics 4
PRINTBACK procedure 74
PRINTDOWN procedure 72
printers 4
printing variables 178
printing with the DUMP
procedure 210
PRINTMESSAGES 27
PRINTPIC command 208

321







recursion 12
RECYCLE command 177
REMAINDER operation 114
removing a character 6
removing a line 6
REMPROP command 233
RENAME command 199
REPEAT command 137
repetition 126, 133
REPORT procedure 132
REPRINT procedure 169
RERANDOM command 115
retrieving a line 6
REVPRINT procedure 86
RIGHT (RT) command 39
ROOT procedure 259
ROUND operation 116
RT (RIGHT) command 39
RUN (command or operation)
138
RUNSTORE procedure 263

SAFE.SQUARE procedure 139
SAFESQUARE procedure 136
sample project using the data
file 221
SAVE command 206
SAVEINFO procedure 222
SAVEL command 207
SAVEPIC command 208
saving space 272
scientific notation 106, 110
screen
changing use of 59
dimensions 59
graphics 35, 59
text 35, 59
.SCRUNCH operation 243
SE (SENTENCE) operation 75
SECRETCODE procedure 81
SECRETCODELET procedure
82
SENGEN procedure 176

Index

SENTENCE (SE) operation 75,
78

SETBG command 51

.SETCRUNCH command 243

SETCURSOR command 61

SETH (SETHEADING)
command 40

SETHEADING (SETH)
command 40

SETPC command 53

SETPOS command 40

SETPREFIX command 199

SETREAD command 217

SETREADPOS command 218

SETWIDTH command 62

SETWRITE command 218

SETWRITEPOS command 219

SETX command 41

SETY command 41

SHORTQUIZ procedure 129

SHOW command 170

SHOWINPUTS procedure 153

SHOWLINES procedure 153

SHOWNP operation 44

SHOWTURTLE (ST) command
42

SIN operation 116

SIREN procedure 171

slash (/) 191

SLITHER subprocedure 134

SNAKE procedure 134

SORT 261, 261

SORT procedure 82

sounds, making with TOOT
171

space, saving 272

SPI procedure 40, 178

SPLITSCREEN (SS) command
63

SQ procedure 117, 176

SQRT operation 117

SQUARE procedure 37, 139,
140, 148, 151

square root 117

[323







value 95
of variable 178, 179
variable(s) 14, 15-16
assigning values to 15
creating 95
with MAKE 99
with NAME 100
description of 95
editing with EDN 96
editing with EDNS 97
erasing 181
global 16, 95
local 16, 95
names
burying 183
printing 179
unburying 184, 185
saving with SAVE 206
saving with SAVEL 207
STARTUP 268
types 16, 95
value, printing 178, 179
VEE procedure 44
volume directory 190
volume names 190
ligtinn 197
\ - /... procedure 89

WAIT command 132
WALK procedure 131

WARMWELCOME procedure

12
WEATHER procedure 100
WELCOME procedure 269
WHICH procedure 130
WHILE procedure 138, 262
WIDTH operation 63
WINDOW command 53

Index

WIPEQUT procedure 263
word, empty 68
word delimiters 68
WORD operation 75, 80
WORDP operation 90, 159
words
breaking into pieces 69
description of 67
changing the case of 90
examining 81
putting together 75
workspace
cleaning 182-185
description of 175
erasing from 180-182
organizing 182-185
printing from 177-180
saving with SAVE 206
saving with SAVEL 207
WRAP command 53
write position, setting 219
WRITEINFO procedure 222
WRITEPOS operation 220
writer, setting 218
WRITER operation 221

x-y coordinates 41, 45, 46
XCOR operation 45
XYZZY procedure 165

y coordinate 41, 45, 46
YCOR operation 46
YESNO procedure 98
YESP procedure 91

325





















